At the interface between two distinct materials, desirable properties, such as superconductivity, can be greatly enhanced1, or entirely new functionalities may emerge2. Similar to in artificially engineered heterostructures, clean functional interfaces alternatively exist in electronically textured bulk materials. Electronic textures emerge spontaneously due to competing atomic-scale interactions3, the control of which would enable a top-down approach for designing tunable intrinsic heterostructures. This is particularly attractive for correlated electron materials, where spontaneous heterostructures strongly affect the interplay between charge and spin degrees of freedom4. Here we report high-resolution neutron spectroscopy on the prototypical strongly correlated metal CeRhIn5, revealing competition between magnetic frustration and easy-axis anisotropy—a well-established mechanism for generating spontaneous superstructures5. Because the observed easy-axis anisotropy is field-induced and anomalously large, it can be controlled efficiently with small magnetic fields. The resulting field-controlled magnetic superstructure is closely tied to the formation of superconducting6 and electronic nematic textures7 in CeRhIn5, suggesting that in situ tunable heterostructures can be realized in correlated electron materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. Nat. Mater. 14, 285–289 (2014).

  2. 2.

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

  3. 3.

    Mohottala, H. E. et al. Phase separation in superoxygenated La2–xSr x CuO4+y. Nat. Mater. 5, 377–382 (2006).

  4. 4.

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

  5. 5.

    Selke, W. The ANNNI model—Theoretical analysis and experimental application. Phys. Rep. 170, 213–364 (1988).

  6. 6.

    Park, T. et al. Textured superconducting phase in the heavy fermion CeRhIn5. Phys. Rev. Lett. 108, 077003 (2012).

  7. 7.

    Ronning, F. et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature 548, 313–317 (2017).

  8. 8.

    Boschker, H. & Mannhart, J. Quantum-matter heterostructures. Annu. Rev. Condens. Matter Phys. 8, 145–164 (2017).

  9. 9.

    Alferov, Z. I. The history and future of semiconductor heterostructures. Semiconductors 32, 1–14 (1998).

  10. 10.

    Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5. Nature 440, 65–68 (2006).

  11. 11.

    Moll, P. J. W. et al. Field-induced density wave in the heavy-fermion compound CeRhIn5. Nat. Commun. 6, 6663 (2015).

  12. 12.

    Das, P. et al. Magnitude of the magnetic exchange interaction in the heavy-fermion antiferromagnet CeRhIn5. Phys. Rev. Lett. 113, 246403 (2014).

  13. 13.

    Fobes, D. M. et al. Low temperature magnetic structure of CeRhIn5 by neutron diffraction using absoption optimized samples. J. Phys. Condens. Matter 29, 17LT01 (2017).

  14. 14.

    Raymond, S., Ressouche, E., Knebel, G., Aoki, D. & Flouquet, J. Magnetic structure of CeRhIn5 under magnetic field. J. Phys. Condens. Matter 19, 242204 (2007).

  15. 15.

    Knebel, G. et al. Antiferromagnetism and superconductivity in CeRhIn5. J. Phys. Soc. Jpn 80, SA001 (2011).

  16. 16.

    Aso, N. et al. Switching of magnetic ordering in CeRhIn5 under hydrostatic pressure. J. Phys. Soc. Jpn 78, 073703 (2009).

  17. 17.

    Jiao, L.et al Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5. Proc. Natl Acad. Sci. USA 112, 673–678 2015).

  18. 18.

    Shishido, H., Settai, R., Harima, H. & Onuki, Y. A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure. J. Phys. Soc. Jpn 74, 1103–1106 (2005).

  19. 19.

    Willers, T.et al Correlation between ground state and orbital anisotropy in heavy fermion materials. Proc. Natl Acad. Sci. USA 112, 2384–2388 2015).

  20. 20.

    Fak, B. et al. Anomalous spin response in the non-centrosymmetric metal CePt3Si. J. Phys. Soc. Jpn 83, 063703 (2014).

  21. 21.

    Moll, P. J. W. et al. Emergent magnetic anisotropy in the cubic heavy-fermion metal CeIn3. npj Quantum Mater. 2, 46 (2017).

  22. 22.

    Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7. Science 315, 214–217 (2007).

  23. 23.

    Chuang, T. M. et al. Nematic electronic structure in the 'parent' state of the iron-based superconductor Ca(Fe1-xCox)(2)As2. Science 327, 181–184 (2010).

  24. 24.

    Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

  25. 25.

    Kitagawa, K., Mezaki, Y., Matsubayashi, K., Uwatoko, Y. & Takigawa, M. Crossover from commensurate to incommensurate antiferromagnetism in stoichiometric NaFeAs revealed by single-crystal 23Na,75As-NMR experiments. J. Phys. Soc. Jpn 80, 033705 (2011).

  26. 26.

    Raymond, S. & Lapertot, G. Ising incommensurate spin resonance of CeCoIn5: A dynamical precursor of the Q phase. Phys. Rev. Lett. 115, 037001 (2015).

  27. 27.

    Tranquada, J. M. et al. Evidence for an incommensurate magnetic resonance in La2–xSr x CuO4. Phys. Rev. B 69, 174507 (2004).

  28. 28.

    Wen, J. et al. Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1+dTe1–xSe x . Phys. Rev. B 80, 104506 (2009).

  29. 29.

    Baek, S. H. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

  30. 30.

    Glasbrenner, J. K. et al. Effect of magnetic frustration on nematicity and superconductivity in iron chalcogenides. Nat. Phys. 11, 953–958 (2015).

  31. 31.

    Ehlers, G., Podlesnyak, A. A., Niedziela, J., Iverson, E. B. & Sokol, P. E. The new cold neutron chopper spectrometer at the Spallation Neutron Source: design and performance. Rev. Sci. Instrum. 82, 085108 (2011).

  32. 32.

    Bewley, R. I., Taylor, J. W., & Bennington, S. M. LET, a cold neutron multi-disk chopper spectrometer at ISIS. Nucl. Instrum. Methods Phys. Res. A 637, 128–134 (2011).

  33. 33.

    Suwa, H. & Todo, S. Markov chain Monte Carlo method without detailed balance. Phys. Rev. Lett. 105, 120603 (2010).

Download references


We acknowledge useful discussions with R. Baumbach, C. Pfleiderer, M. Garst, M. Votja, P. Böni and J. M. Lawrence. Work at Los Alamos National Laboratory (LANL) was performed under the auspices of the US Department of Energy. LANL is operated by Los Alamos National Security for the National Nuclear Security Administration of DOE under contract DE-AC52-06NA25396. Research supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under the project ‘Complex Electronic Materials’ (material synthesis and characterization) and the LANL Directed Research and Development program (neutron scattering, development of the spin wave model, mean-field computation and development of analysis software). Research conducted at Oak Ridge National Laboratory’s (ORNL) Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. Experiments at the ISIS Pulsed Neutron and Muon Source were supported by a beam time allocation from the Science and Technology Facilities Council. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing the neutron research facilities used in this work.

Author information

Author notes

    • Pinaki Das

    Present address: Division of Materials Sciences and Engineering, Ames Laboratory, U.S. DOE, Iowa State University, Ames, IA, USA

    • N. J. Ghimire

    Present address: Argonne National Laboratory, Lemont, IL, USA


  1. MPA-CMMS, Los Alamos National Laboratory, Los Alamos, NM, USA

    • D. M. Fobes
    • , Pinaki Das
    • , N. J. Ghimire
    • , E. D. Bauer
    • , J. D. Thompson
    • , F. Ronning
    • , C. D. Batista
    •  & M. Janoschek
  2. Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, USA

    • S. Zhang
    •  & C. D. Batista
  3. T-4, Los Alamos National Laboratory, Los Alamos, NM, USA

    • S.-Z. Lin
  4. NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA

    • L. W. Harriger
  5. QCMD, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    • G. Ehlers
    •  & A. Podlesnyak
  6. ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Chilton, Didcot, UK

    • R. I. Bewley
  7. Institute of Crystallography, RWTH Aachen University and Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany

    • A. Sazonov
    •  & V. Hutanu


  1. Search for D. M. Fobes in:

  2. Search for S. Zhang in:

  3. Search for S.-Z. Lin in:

  4. Search for Pinaki Das in:

  5. Search for N. J. Ghimire in:

  6. Search for E. D. Bauer in:

  7. Search for J. D. Thompson in:

  8. Search for L. W. Harriger in:

  9. Search for G. Ehlers in:

  10. Search for A. Podlesnyak in:

  11. Search for R. I. Bewley in:

  12. Search for A. Sazonov in:

  13. Search for V. Hutanu in:

  14. Search for F. Ronning in:

  15. Search for C. D. Batista in:

  16. Search for M. Janoschek in:


N.J.G., P.D. and E.D.B. synthesized the single crystal samples; J.D.T. and F.R. carried out thermal and transport measurements; D.M.F., G.E., A.P., L.W.H., R.I.B., V.H., A.S. and M.J. performed the neutron spectroscopy measurements; D.M.F. wrote the software for analysing the neutron data; DMF and MJ analyzed the neutron data; M.J. supervised the experimental work; S.Z., S.Z.L. and C.D.B. developed the theoretical model and carried out all calculations; D.M.F., S.Z.L., C.D.B. and M.J. proposed and designed this study, and D.M.F., C.D.B. and M.J. wrote the manuscript; all authors discussed the data and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Janoschek.

Supplementary information

  1. Supplementary Information

    4 Figures, 14 References

About this article

Publication history




Issue Date