Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Alfvén wave dissipation in the solar chromosphere

Abstract

Magnetohydrodynamic Alfvén waves1 have been a focus of laboratory plasma physics2 and astrophysics3 for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions for their existence4, direct detection has proved difficult as a result of their evolving and dynamic observational signatures. The viability of Alfvén waves as a heating mechanism relies upon the efficient dissipation and thermalization of the wave energy, with direct evidence remaining elusive until now. Here we provide the first observational evidence of Alfvén waves heating chromospheric plasma in a sunspot umbra through the formation of shock fronts. The magnetic field configuration of the shock environment, alongside the tangential velocity signatures, distinguish them from conventional umbral flashes5. Observed local temperature enhancements of 5% are consistent with the dissipation of mode-converted Alfvén waves driven by upwardly propagating magneto-acoustic oscillations, providing an unprecedented insight into the behaviour of Alfvén waves in the solar atmosphere and beyond.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The building blocks of the magnetized solar atmosphere observed on 24 August 2014.
Fig. 2: A statistical insight into the magnetic, velocity and occurrence relationships between shock phenomena in a sunspot umbra.
Fig. 3: A cartoon representation of a sunspot umbral atmosphere demonstrating a variety of shock phenomena.
Fig. 4: The distribution of temperature enhancements resulting from Alfvén shocks close to the umbral boundary.

Similar content being viewed by others

References

  1. Alfvén, H. Magneto hydrodynamic waves, and the heating of the solar corona. Mon. Not. R. Astron. Soc. 107, 211–219 (1947).

    Article  ADS  Google Scholar 

  2. Gekelman, W., Vincena, S., Leneman, D. & Maggs, J. Laboratory experiments on shear Alfvén waves and their relationship to space plasmas. J. Geophys. Res. 102, 7225–7236 (1997).

    Article  ADS  Google Scholar 

  3. Mathioudakis, M., Jess, D. B. & Erdélyi, R. Alfvén waves in the solar atmosphere. From theory to observations. Space Sci. Rev. 175, 1–27 (2013).

    Article  ADS  Google Scholar 

  4. Morton, R. J., Verth, G., Fedun, V., Shelyag, S. & Erdélyi, R. Evidence for the photospheric excitation of incompressible chromospheric waves. Astrophys. J. 768, 17 (2013).

    Article  ADS  Google Scholar 

  5. Beckers, J. M. & Tallant, P. E. Chromospheric inhomogeneities in sunspot umbrae. Sol. Phys. 7, 351–365 (1969).

    Article  ADS  Google Scholar 

  6. Jess, D. B. et al. Multiwavelength studies of MHD waves in the solar chromosphere. An overview of recent results. Space Sci. Rev. 190, 103–161 (2015).

    Article  ADS  Google Scholar 

  7. Tomczyk, S. et al. Alfvén waves in the solar corona. Science 317, 1192–1196 (2007).

    Article  ADS  Google Scholar 

  8. De Pontieu, B. et al. Chromospheric Alfvén waves strong enough to power the solar wind. Science 318, 1574–1577 (2007).

    Article  ADS  Google Scholar 

  9. Jess, D. B. et al. Alfvén waves in the lower solar atmosphere. Science 323, 1582–1585 (2009).

    Article  ADS  Google Scholar 

  10. Heyvaerts, J. & Priest, E. R. Coronal heating by phase-mixed shear Alfvén waves. Astron. Astrophys. 117, 220–234 (1983).

    ADS  MATH  Google Scholar 

  11. Bogdan, T. J. et al. Waves in the magnetized solar atmosphere. II. Waves from localized sources in magnetic flux concentrations. Astrophys. J. 599, 626–660 (2003).

    Article  ADS  Google Scholar 

  12. Schwarzschild, M. On noise arising from the solar granulation. Astrophys. J. 107, 1–5 (1948).

    Article  ADS  Google Scholar 

  13. de la Cruz Rodrguez, J., Rouppe van der Voort, L., Socas-Navarro, H. & van Noort, M. Physical properties of a sunspot chromosphere with umbral flashes. Astron. Astrophys. 556, A115 (2013).

    Article  Google Scholar 

  14. Arber, T. D., Brady, C. S. & Shelyag, S. Alfvén wave heating of the solar chromosphere: 1.5D models. Astrophys. J. 817, 94 (2016).

    Article  ADS  Google Scholar 

  15. Montgomery, D. Development of hydromagnetic shocks from large-amplitude Alfvén waves. Phys. Rev. Lett. 2, 36–37 (1959).

    Article  ADS  Google Scholar 

  16. Hada, T. Evolution of large amplitude Alfvén waves in the solar wing with beta approximately 1. Geophys. Res. Lett. 20, 2415–2418 (1993).

    Article  ADS  Google Scholar 

  17. Cavallini, F. IBIS: A new post-focus instrument for solar imaging spectroscopy. Sol. Phys. 236, 415–439 (2006).

    Article  ADS  Google Scholar 

  18. Wiegelmann, T. Nonlinear force-free modelling of the solar coronal magnetic field. J. Geophys. Res. 113, A03S02 (2008).

    Article  ADS  Google Scholar 

  19. Schou, J. et al. Design and ground calibration of the Helioseismic and Magnetic Imager (HMI) instrument on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 229–259 (2012).

    Article  ADS  Google Scholar 

  20. Bard, S. & Carlsson, M. Radiative hydrodynamic simulations of acoustic waves in sunspots. Astrophys. J. 722, 888 (2010).

    Article  ADS  Google Scholar 

  21. Hollweg, J. V., Jackson, S. & Galloway, D. Alfvén waves in the solar atmosphere. III – Nonlinear waves on open flux tubes. Sol. Phys. 75, 35–61 (1982).

    Article  ADS  Google Scholar 

  22. Beck, C., Choudhary, D. P., Rezaei, R. & Louis, R. E. Fast inversion of solar Ca ii spectra. Astrophys. J. 798, 100 (2015).

    Article  ADS  Google Scholar 

  23. Khomenko, E. & Cally, P. S. Numerical simulations of conversion to Alfvén waves in sunspots. Astrophys. J. 746, 68 (2012).

    Article  ADS  Google Scholar 

  24. Rouppe van der Voort, L. H. M., Rutten, R. J., Sütterlin, P., Sloover, P. J. & Krijger, J. M. La Palma observations of umbral flashes. Astron. Astrophys. 403, 277–285 (2003).

    Article  ADS  Google Scholar 

  25. Maltby, P. et al. A new sunspot umbral model and its variation with the solar cycle. Astrophys. J. 306, 284–303 (1986).

    Article  ADS  Google Scholar 

  26. Socas-Navarro, H., de la Cruz Rodrguez, J., Asensio Ramos, A., Trujillo Bueno, J. & Ruiz Cobo, B. An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles. Astron. Astrophys. 577, A7 (2015).

    Article  Google Scholar 

  27. Cho, I.-H. et al. Determination of the Alfvén speed and plasma-beta using the seismology of sunspot umbra. Astrophys. J. Lett. 837, L11 (2017).

    Article  ADS  Google Scholar 

  28. Kanoh, R., Shimizu, T. & Imada, S. Hinode and IRIS observations of the magnetohydrodynamic waves propagating from the photosphere to the chromosphere in a sunspot. Astrophys. J. 831, 24 (2016).

    Article  ADS  Google Scholar 

  29. Cally, P. S. & Moradi, H. Seismology of the wounded Sun. Mon. Not. R. Astron. Soc. 435, 2589–2597 (2013).

    Article  ADS  Google Scholar 

  30. Fontenla, J. M., Curdt, W., Haberreiter, M., Harder, J. & Tian, H. Semiempirical models of the solar atmosphere. III. Set of non-LTE models for the far-ultraviolet/extreme-ultraviolet irradiance computation. Astrophys. J. 707, 482–502 (2009).

    Article  ADS  Google Scholar 

  31. Pesnell, W. D., Thompson, B. J. & Chamberlin, P. C. The Solar Dynamics Observatory (SDO). Sol. Phys. 275, 3–15 (2012).

    Article  ADS  Google Scholar 

  32. Borrero, J. M. et al. VFISV: Very Fast Inversion of the Stokes Vector for the Helioseismic and Magnetic imager. Sol. Phys. 273, 267–293 (2011).

    Article  ADS  Google Scholar 

  33. Metcalf, T. R. et al. An overview of existing algorithms for resolving the 180° ambiguity in vector magnetic fields: Quantitative tests with synthetic data. Sol. Phys. 237, 267–296 (2006).

    Article  ADS  Google Scholar 

  34. Leka, K. D. et al. Resolving the 180° ambiguity in solar vector magnetic field data: Evaluating the effects of noise, spatial resolution, and method assumptions. Sol. Phys. 260, 83–108 (2009).

    Article  ADS  Google Scholar 

  35. Aschwanden, M. J. The vertical-current approximation nonlinear force-free field code - Description, performance tests, and measurements of magnetic energies dissipated in solar flares. Astrophys. J. Supp. 224, 25 (2016).

    Article  ADS  Google Scholar 

  36. Jess, D. B. et al. The source of 3 minute magnetoacoustic oscillations in coronal fans. Astrophys. J. 757, 160 (2012).

    Article  ADS  Google Scholar 

  37. Madsen, C. A., Tian, H. & DeLuca, E. E. Observations of umbral flashes and running sunspot waves with the Interface Region Imaging Spectrograph. Astrophys. J. 800, 129 (2015).

    Article  ADS  Google Scholar 

  38. Kerr, G. S., Simões, P. J. A., Qiu, J. & Fletcher, L. IRIS observations of the Mg II H and K lines during a solar flare. Astron. Astrophys. 582, A50 (2015).

    Article  ADS  Google Scholar 

  39. Rezaei, R. & Beck, C. Multiwavelength spectropolarimetric observations of an Ellerman bomb. Astron. Astrophys. 582, A104 (2015).

    Article  ADS  Google Scholar 

  40. Beck, C., Rezaei, R. & Puschmann, K. G. The energy of waves in the photosphere and lower chromosphere. III. Inversion setup for Ca ii H spectra in local thermal equilibrium. Astron. Astrophys. 549, A24 (2013).

    Article  ADS  Google Scholar 

  41. Beck, C., Rezaei, R. & Puschmann, K. G. The energy of waves in the photosphere and lower chromosphere. IV. Inversion results of Ca ii H spectra. Astron. Astrophys. 553, A73 (2013).

    Article  ADS  Google Scholar 

  42. Beck, C., Choudhary, D. P. & Rezaei, R. A three-dimensional view of the thermal structure in a super-penumbral canopy. Astrophys. J. 788, 183 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.D.T.G. and S.J.H. thank the Northern Ireland Department for Employment and Learning (now the Northern Ireland Department for the Economy) for the awards of PhD studentships. D.B.J. wishes to thank the UK Science and Technology Facilities Council for the award of an Ernest Rutherford Fellowship alongside a dedicated Research Grant. S.D.T.G. and D.B.J. also wish to thank Invest NI and Randox Laboratories Ltd for the award of a Research & Development Grant (059RDEN-1) that allowed this work to be undertaken. T.Z. was supported by the Austrian Science Fund (FWF) project P30695-N27 and by the Georgian Shota Rustaveli National Science Foundation project DI-2016-17. H.S.-N. acknowledges support from the Spanish Ministry of Economy and Competitivity through project AYA2014-60476-P (Solar Magnetometry in the Era of Large Solar Telescopes). P.H.K. is grateful to the Leverhulme Trust for the award of an Early Career Fellowship. The NSO is operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation. The magnetic field measurements employed in this work are courtesy of NASA/SDO and the AIA, EVE and HMI science teams.

Author information

Authors and Affiliations

Authors

Contributions

S.D.T.G., D.B.J. and P.H.K. performed analysis of the observations. S.D.T.G., D.B.J., T.V.Z., M.J.A., D.J.C., S.J.H. and R.L.H. interpreted the observations. S.D.T.G, D.B.J., C.B., H.S.-N. and M.J.A. prepared and processed all data products. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Samuel D. T. Grant.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

11 chapters, 10 figures, 98 references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grant, S.D.T., Jess, D.B., Zaqarashvili, T.V. et al. Alfvén wave dissipation in the solar chromosphere. Nature Phys 14, 480–483 (2018). https://doi.org/10.1038/s41567-018-0058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-018-0058-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing