Liquid beyond the van der Waals paradigm


An ultracold mixture of Bose gases is eight orders of magnitude more dilute than water. However, quantum fluctuations turn it into a self-bound liquid droplet.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Liquid droplets.


  1. 1.

    Cabrera, C. R. et al. Science 359, 301–304 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Petrov, D. S. Phys. Rev. Lett. 115, 155302 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Semeghini, G. et al. Preprint at https://arxiv.org/abs/1710.10890 (2017).

  4. 4.

    Lee, T. D., Huang, K. & Yang, C. N. Phys. Rev. 106, 1135–1145 (1957).

    ADS  MathSciNet  Article  Google Scholar 

  5. 5.

    Cheiney, P. et al. Preprint at https://arxiv.org/abs/1710.11079 (2017).

  6. 6.

    Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Phys. Rev. Lett. 116, 215301 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Nature 539, 259–262 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Chomaz, L. et al. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dmitry S. Petrov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petrov, D.S. Liquid beyond the van der Waals paradigm. Nature Phys 14, 211–212 (2018). https://doi.org/10.1038/s41567-018-0052-9

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing