Review Article | Published:

Antiferromagnetic opto-spintronics

Nature Physicsvolume 14pages229241 (2018) | Download Citation

Abstract

Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Néel, L. Propriétées magnétiques des ferrites; férrimagnétisme et antiferromagnétisme. Ann. Phys. (Paris) 3, 137–198 (1948).

  2. 2.

    Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

  3. 3.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  4. 4.

    Fiebig, M., Lottermoser, Th, Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

  5. 5.

    Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photon. 10, 653–656 (2016).

  6. 6.

    Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. https://doi.org/s41567-018-0050-y (2018).

  7. 7.

    Stiles, M. D. in Ultrathin Magnetic Structures III, Fundamentals of Nanomagnetism (eds Bland, J. A. C. & Heinrich, B.) Ch. 4 (Springer, Berlin, 2005).

  8. 8.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

  9. 9.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

  10. 10.

    Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).

  11. 11.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  12. 12.

    Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Stat. Sol. RRL. 11, 1700022 (2017).

  13. 13.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mos. Phys. 90, 015005 (2018).

  14. 14.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

  15. 15.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

  16. 16.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

  17. 17.

    Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

  18. 18.

    Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

  19. 19.

    Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).

  20. 20.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

  21. 21.

    Pashkin, A., Sell, A., Kampfrath, T. & Huber, R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New J. Phys. 15, 065003 (2013).

  22. 22.

    Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol, 1997).

  23. 23.

    Ivanov, B. A. Spin dynamics of antiferromagnets under action of femtosecond laser pulses. Low Temp. Phys. 40, 91–105 (2014).

  24. 24.

    Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

  25. 25.

    Bossini, D., Kalashnikova, A. M., Pisarev, R. V., Rasing, Th & Kimel, A. V. Controlling coherent and incoherent spin dynamics by steering the photoinduced energy flow. Phys. Rev. B 89, 060405 (2014).

  26. 26.

    Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).

  27. 27.

    Zhao, J., Bragas, A. V., Lockwood, D. J. & Merlin, R. Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit. Phys. Rev. Lett. 93, 107203 (2004).

  28. 28.

    Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).

  29. 29.

    McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D 48, 333001 (2015).

  30. 30.

    Smolenskiĭ, G. A., Pisarev, R. V. & Siniĭ, I. G. Birefringence of light in magnetically ordered crystals. Sov. Phys. Usp. 18, 410–429 (1975).

  31. 31.

    Iida, R. et al. Spectral dependence of photoinduced spin precession in DyFeO3. Phys. Rev. B. 84, 064402 (2011).

  32. 32.

    Kimel, A. V., Pisarev, R. V., Hohlfeld, J. & Rasing, Th Ultrafast quenching of the antiferromagnetic order in FeBO3: direct optical probing of the phonon–magnon coupling. Phys. Rev. Lett. 89, 287401 (2002).

  33. 33.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

  34. 34.

    Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

  35. 35.

    Kimel, A. V. et al. Optical excitation of antiferromagnetic resonance in TmFeO3. Phys. Rev. B 74, 060403(R) (2006).

  36. 36.

    Kalashnikova, A. M. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 99, 167205 (2007).

  37. 37.

    Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

  38. 38.

    Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

  39. 39.

    Eremenko, V. V., Kharchenko, N. F., Litvinenko, Y. G. & Naumenko, V. M. Magneto-Optics and Spectroscopy of Antiferromagnets (Springer-Verlag, New York, NY, 1992).

  40. 40.

    Andreev, A. F. & Marchenko, V. I. Symmetry and the macroscopic dynamics of magnetic materials. Sov. Phys. Usp. 23, 21–34 (1980).

  41. 41.

    Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25–29 (2015).

  42. 42.

    Mertins, H.-C. et al. Magneto-optical polarization spectroscopy with soft X-rays. Appl. Phys. A 80, 1011–1020 (2005).

  43. 43.

    Tesařová, N. et al. Direct measurement of the three-dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method. Appl. Phys. Lett. 100, 102403 (2012).

  44. 44.

    Tesařová, N. et al. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203 (2014).

  45. 45.

    Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–97 (2017).

  46. 46.

    Tesarova, N. et al. High precision magnetic linear dichroism measurements in (Ga,Mn)As. Rev. Sci. Instrum. 83, 123108 (2012).

  47. 47.

    Ehrke, H. et al. Photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4 measured using ultrafast resonant soft X-ray diffraction. Phys. Rev. Lett. 106, 217401 (2011).

  48. 48.

    Subkhangulov, R. R. et al. All-optical manipulation and probing of the d–f exchange interaction in EuTe. Sci. Rep. 4, 4368 (2014).

  49. 49.

    Saidl, V. et al. Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region. New J. Phys. 18, 083017 (2016).

  50. 50.

    Dodge, J. S., Schumacher, A. B., Bigot, J.-Y. & Chemla, D. S. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

  51. 51.

    Batignani, G. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photon. 9, 506–510 (2015).

  52. 52.

    Krichevstov, B. B., Pavlov, V. V., Pisarev, R. V. & Gridnev, V. N. Spontaneous nonreciprocal reflection of light from antiferromagnetic Cr2O3. J. Phys. Cond. Mat. 5, 8233–8244 (1993).

  53. 53.

    Toyoda, S. et al. One-way transparency of light in multiferroic CuB2O4. Phys. Rev. Lett. 115, 267207 (2015).

  54. 54.

    Valencia, S. et al. Quadratic X-ray magneto-optical effect upon reflection in a near-normal-incidence configuration at the M edges of 3d-transition metals. Phys. Rev. Lett. 104, 187401 (2010).

  55. 55.

    Wadley, P. et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 5, 17079 (2015).

  56. 56.

    Shimano, R. et al. Terahertz Faraday rotation induced by an anomalous Hall effect in the itinerant ferromagnet SrRuO3. Eur. Phys. Lett. 95, 17002 (2011).

  57. 57.

    Huisman, T. J. et al. Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4. Appl. Phys. Lett. 106, 132411 (2015).

  58. 58.

    Wadley, P. et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 11147 (2017).

  59. 59.

    Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

  60. 60.

    Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

  61. 61.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

  62. 62.

    Boyd, R. W. Nonlinear Optics (Elsevier, Amsterdam, 2008).

  63. 63.

    Pershan, P. S. Nonlinear optical properties of solids: energy considerations. Phys. Rev. 130, 919–929 (1963).

  64. 64.

    Fiebig, M., Fröhlich, D., Krichevtsov, B. B. & Pisarev, R. V. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994).

  65. 65.

    Adler, E. Nonlinear optical frequency polarization in a dielectric. Phys. Rev. 134, A728–A733 (1964).

  66. 66.

    Lajzerowicz, J. & Vallade, M. Génération du second harmonique dans les substances magnétiques ordonnées. C. R. Seances Acad. Sci. B 264, 1819–1821 (1967).

  67. 67.

    Agaltsov, A. M., Gorelik, V. S., Zvezdin, A. K., Murashov, V. A. & Rakov, D. N. Temperature dependence of the second harmonic generation in ferroelectric-magnetic bismuth ferrite. Sov. Phys. Short Commun. 5, 37–39 (1989).

  68. 68.

    Reif, J., Zink, J. C., Schneider, C.-M. & Kirschner, J. Effects of surface magnetism on optical second harmonic generation. Phys. Rev. Lett. 67, 2878–2881 (1991).

  69. 69.

    Reif, J., Rau, C. & Matthias, E. Influence of magnetism on second harmonic generation. Phys. Rev. Lett. 71, 1931–1934 (1993).

  70. 70.

    Murashov, V. A. et al. Magnetoelectric (Bi, Ln)FeO3 compounds: crystal growth, structure and properties. Ferroelectrics 162, 11–21 (1994).

  71. 71.

    Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. J. Opt. Soc. Am. B 22, 96–118 (2005).

  72. 72.

    Fiebig, M., Fröhlich, D., Lottermoser, T. & Kallenbach, S. Phase-resolved second-harmonic imaging with non-ideal laser sources. Opt. Lett. 29, 41–43 (2004).

  73. 73.

    Duong, N. P., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

  74. 74.

    Rubano, A. et al. Influence of laser pulse shaping on the ultrafast dynamics in antiferromagnetic NiO. Phys. Rev. B 82, 174431 (2010).

  75. 75.

    Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the morin transition in DyFeO3. Phys. Rev. Lett. 16, 097401 (2016).

  76. 76.

    Fiebig, M., Lottermoser, Th, Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

  77. 77.

    Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

  78. 78.

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

  79. 79.

    Hoffmann, M. C. in Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E., Zeitler, A. & Kuwata-Gonokami, M.) Ch. 14 (Springer, Berlin, 2013).

  80. 80.

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

  81. 81.

    Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotech. 8, 256–260 (2013).

  82. 82.

    Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

  83. 83.

    Nishitani, J., Kozuki, K., Nagashima, T. & Hangyo, M. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010).

  84. 84.

    Nishitani, J., Nagashima, T. & Hangyo, M. Coherent control of terahertz radiation from antiferromagnetic magnons in NiO excited by optical laser pulses. Phys. Rev. B 85, 174439 (2012).

  85. 85.

    Mikhaylovskiy, R. V. Terahertz magnetization dynamics induced by femtosecond resonant pumping of Dy3+ subsystem in the multisublattice antiferromagnet DyFeO3. Phys. Rev. B 92, 094437 (2015).

  86. 86.

    Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

  87. 87.

    Kampfrath, T. et al. Ultrafast magneto-optical response of iron thin films. Phys. Rev. B 65, 104429 (2002).

  88. 88.

    Regensburger, H., Vollmer, R. & Kirschner, J. Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface. Phys. Rev. B 61, 14716 (2000).

  89. 89.

    Yamaguchi, K., Nakajima, M. & Suemoto, T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett. 105, 237201 (2010).

  90. 90.

    Ney, O., Trzeciecki, M. & Huebner, W. Femtosecond dynamics of spin-dependent SHG response from NiO (001). Appl. Phys. B 74, 741–744 (2002).

  91. 91.

    Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250 (1996).

  92. 92.

    Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).

  93. 93.

    Thiele, J.-U., Buess, M. & Back, C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale. Appl. Phys. Lett. 85, 2857–2859 (2004).

  94. 94.

    Bergman, B. et al. Identifying growth mechanisms for laser-induced magnetization in FeRh. Phys. Rev. B 73, 060407(R) (2006).

  95. 95.

    Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in FeRh. Phys. Rev. Lett. 108, 087201 (2012).

  96. 96.

    Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

  97. 97.

    Ju, G. et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705–3708 (1999).

  98. 98.

    McCord, J., Kaltofen, R., Gemming, T., Hühne, R. & Schultz, L. Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B 75, 134418 (2007).

  99. 99.

    Porat, A., Bar-Ad, S. & Schuller, I. K. Novel laser-induced dynamics in exchange-biased systems. Eur. Phys. Lett. 87, 67001 (2009).

  100. 100.

    Longa, F. D., Kohlhepp, J. T., de Jonge, W. J. M. & Koopmans, B. Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 81, 094435 (2010).

  101. 101.

    Ma, X. et al. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes. Nat. Commun. 6, 8800 (2015).

  102. 102.

    Saidl, V. et al. Investigation of exchange coupled bilayer Fe/CuMnAs by pump-probe experiment. Phys. Stat. Sol. RRL 11, 1600441 (2017).

  103. 103.

    Wienholdt, S., Hinzke, D. & Nowak, U. THz switching of antiferromagnets and ferrimagnets. Phys. Rev. Lett. 108, 247207 (2012).

  104. 104.

    Olejník, K et al. THz electrical writing speed in an antiferromagnetic memory. Sci. Adv. (in the press); preprint at https://arxiv.org/abs/1711.08444

  105. 105.

    Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin-transport and spin-torque in antiferromagnetic devices. Nat. Phys. https://doi.org/s41567-018-0062-7 (2018).

  106. 106.

    Battiato, M., Barbalinardo, G. & Oppeneer, P. M. Quantum theory of the inverse Faraday effect. Phys. Rev. B 89, 014413 (2014).

  107. 107.

    Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–79 (2017).

Download references

Acknowledgements

P.N. acknowledges support from the Grant Agency of the Czech Republic under grant no. 14-37427G, the Ministry of Education of the Czech Republic under grants LM2015087 and LNSM-LNSpin, and the EU FET Open RIA grant no. 766566. A.V.K. acknowledges the Netherlands Foundation of Scientific Research (NWO) and the Ministry of Education and Science of the Russian Federation (project no. 14.Z50.31.0034). T.K. thanks the European Research Council for support through grant no. 681917 (TERAMAG) and the German Research Foundation through CRC/TRR 227. M.F. acknowledges support from the SNSF project 200021/147080 and by FAST, a division of the SNSF NCCR MUST.

Author information

Affiliations

  1. Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

    • P. Němec
  2. Department of Materials, ETH Zurich, Zurich, Switzerland

    • M. Fiebig
  3. Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

    • T. Kampfrath
  4. Department of Physics, Freie Universität Berlin, Berlin, Germany

    • T. Kampfrath
  5. Radboud University, Institute for Molecules and Materials, Nijmegen, the Netherlands

    • A. V. Kimel
  6. Moscow Technological University, MIREA, Moscow, Russia

    • A. V. Kimel

Authors

  1. Search for P. Němec in:

  2. Search for M. Fiebig in:

  3. Search for T. Kampfrath in:

  4. Search for A. V. Kimel in:

Corresponding author

Correspondence to P. Němec.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0051-x

Further reading