Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antiferromagnetic opto-spintronics

Abstract

Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematics of investigation of antiferromagnets by electromagnetic radiation.
Fig. 2: Visualization of antiferromagnetic domains by SHG and XMLD–PEEM.
Fig. 3: Determination of the uniaxial magnetic anisotropy direction and Néel temperature from pump-induced demagnetization in CuMnAs film.
Fig. 4: Ultrafast modification of magnetic order in FeRh and TmFeO3.
Fig. 5: Optical switching of the antiferromagnetic state in HoFeO3 and TbMnO3.
Fig. 6: Magnetization precession induced by terahertz pulses in NiO, YFeO3 and TmFeO3.
Fig. 7: Magnetization precession induced by inverse magneto-optical effects in DyFeO3, NiO and FeBO3.
Fig. 8: Vectorial control of magnetization by light in NiO and YMnO3.

References

  1. 1.

    Néel, L. Propriétées magnétiques des ferrites; férrimagnétisme et antiferromagnétisme. Ann. Phys. (Paris) 3, 137–198 (1948).

    Google Scholar 

  2. 2.

    Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241–255 (1958).

    ADS  Article  Google Scholar 

  3. 3.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    ADS  Article  Google Scholar 

  4. 4.

    Fiebig, M., Lottermoser, Th, Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photon. 10, 653–656 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Duine, R. A., Lee, K.-J., Parkin, S. S. P. & Stiles, M. D. Synthetic antiferromagnetic spintronics. Nat. Phys. https://doi.org/s41567-018-0050-y (2018).

  7. 7.

    Stiles, M. D. in Ultrathin Magnetic Structures III, Fundamentals of Nanomagnetism (eds Bland, J. A. C. & Heinrich, B.) Ch. 4 (Springer, Berlin, 2005).

  8. 8.

    Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin–orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

  12. 12.

    Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Stat. Sol. RRL. 11, 1700022 (2017).

  13. 13.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mos. Phys. 90, 015005 (2018).

  14. 14.

    Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

  17. 17.

    Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

  18. 18.

    Kirilyuk, A., Kimel, A. V. & Rasing, Th. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).

  19. 19.

    Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Kampfrath, T. et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    ADS  Article  Google Scholar 

  21. 21.

    Pashkin, A., Sell, A., Kampfrath, T. & Huber, R. Electric and magnetic terahertz nonlinearities resolved on the sub-cycle scale. New J. Phys. 15, 065003 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol, 1997).

    Book  Google Scholar 

  23. 23.

    Ivanov, B. A. Spin dynamics of antiferromagnets under action of femtosecond laser pulses. Low Temp. Phys. 40, 91–105 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    Article  Google Scholar 

  25. 25.

    Bossini, D., Kalashnikova, A. M., Pisarev, R. V., Rasing, Th & Kimel, A. V. Controlling coherent and incoherent spin dynamics by steering the photoinduced energy flow. Phys. Rev. B 89, 060405 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Zhao, J., Bragas, A. V., Lockwood, D. J. & Merlin, R. Magnon squeezing in an antiferromagnet: reducing the spin noise below the standard quantum limit. Phys. Rev. Lett. 93, 107203 (2004).

    ADS  Article  Google Scholar 

  28. 28.

    Ferre, J. & Gehring, G. A. Linear optical birefringence of magnetic crystals. Rep. Prog. Phys. 47, 513–611 (1984).

    ADS  Article  Google Scholar 

  29. 29.

    McCord, J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D 48, 333001 (2015).

    Article  Google Scholar 

  30. 30.

    Smolenskiĭ, G. A., Pisarev, R. V. & Siniĭ, I. G. Birefringence of light in magnetically ordered crystals. Sov. Phys. Usp. 18, 410–429 (1975).

    ADS  Article  Google Scholar 

  31. 31.

    Iida, R. et al. Spectral dependence of photoinduced spin precession in DyFeO3. Phys. Rev. B. 84, 064402 (2011).

    ADS  Article  Google Scholar 

  32. 32.

    Kimel, A. V., Pisarev, R. V., Hohlfeld, J. & Rasing, Th Ultrafast quenching of the antiferromagnetic order in FeBO3: direct optical probing of the phonon–magnon coupling. Phys. Rev. Lett. 89, 287401 (2002).

    ADS  Article  Google Scholar 

  33. 33.

    Kimel, A. V., Kirilyuk, A., Tsvetkov, A., Pisarev, R. V. & Rasing, Th Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004).

    ADS  Article  Google Scholar 

  34. 34.

    Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    ADS  Article  Google Scholar 

  35. 35.

    Kimel, A. V. et al. Optical excitation of antiferromagnetic resonance in TmFeO3. Phys. Rev. B 74, 060403(R) (2006).

    ADS  Article  Google Scholar 

  36. 36.

    Kalashnikova, A. M. et al. Impulsive generation of coherent magnons by linearly polarized light in the easy-plane antiferromagnet FeBO3. Phys. Rev. Lett. 99, 167205 (2007).

    ADS  Article  Google Scholar 

  37. 37.

    Baierl, S. et al. Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photon. 10, 715–718 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Feng, W., Guo, G.-Y., Zhou, J., Yao, Y. & Niu, Q. Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt). Phys. Rev. B 92, 144426 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Eremenko, V. V., Kharchenko, N. F., Litvinenko, Y. G. & Naumenko, V. M. Magneto-Optics and Spectroscopy of Antiferromagnets (Springer-Verlag, New York, NY, 1992).

    Book  Google Scholar 

  40. 40.

    Andreev, A. F. & Marchenko, V. I. Symmetry and the macroscopic dynamics of magnetic materials. Sov. Phys. Usp. 23, 21–34 (1980).

    ADS  Article  Google Scholar 

  41. 41.

    Satoh, T., Iida, R., Higuchi, T., Fiebig, M. & Shimura, T. Writing and reading of an arbitrary optical polarization state in an antiferromagnet. Nat. Photon. 9, 25–29 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Mertins, H.-C. et al. Magneto-optical polarization spectroscopy with soft X-rays. Appl. Phys. A 80, 1011–1020 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Tesařová, N. et al. Direct measurement of the three-dimensional magnetization vector trajectory in GaMnAs by a magneto-optical pump-and-probe method. Appl. Phys. Lett. 100, 102403 (2012).

    ADS  Article  Google Scholar 

  44. 44.

    Tesařová, N. et al. Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As. Phys. Rev. B 89, 085203 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon. 11, 91–97 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Tesarova, N. et al. High precision magnetic linear dichroism measurements in (Ga,Mn)As. Rev. Sci. Instrum. 83, 123108 (2012).

  47. 47.

    Ehrke, H. et al. Photoinduced melting of antiferromagnetic order in La0.5Sr1.5MnO4 measured using ultrafast resonant soft X-ray diffraction. Phys. Rev. Lett. 106, 217401 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Subkhangulov, R. R. et al. All-optical manipulation and probing of the d–f exchange interaction in EuTe. Sci. Rep. 4, 4368 (2014).

    Article  Google Scholar 

  49. 49.

    Saidl, V. et al. Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region. New J. Phys. 18, 083017 (2016).

    ADS  Article  Google Scholar 

  50. 50.

    Dodge, J. S., Schumacher, A. B., Bigot, J.-Y. & Chemla, D. S. Time-resolved optical observation of spin-wave dynamics. Phys. Rev. Lett. 83, 4650–4653 (1999).

    ADS  Article  Google Scholar 

  51. 51.

    Batignani, G. et al. Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photon. 9, 506–510 (2015).

    ADS  Article  Google Scholar 

  52. 52.

    Krichevstov, B. B., Pavlov, V. V., Pisarev, R. V. & Gridnev, V. N. Spontaneous nonreciprocal reflection of light from antiferromagnetic Cr2O3. J. Phys. Cond. Mat. 5, 8233–8244 (1993).

    ADS  Article  Google Scholar 

  53. 53.

    Toyoda, S. et al. One-way transparency of light in multiferroic CuB2O4. Phys. Rev. Lett. 115, 267207 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    Valencia, S. et al. Quadratic X-ray magneto-optical effect upon reflection in a near-normal-incidence configuration at the M edges of 3d-transition metals. Phys. Rev. Lett. 104, 187401 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    Wadley, P. et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 5, 17079 (2015).

    ADS  Article  Google Scholar 

  56. 56.

    Shimano, R. et al. Terahertz Faraday rotation induced by an anomalous Hall effect in the itinerant ferromagnet SrRuO3. Eur. Phys. Lett. 95, 17002 (2011).

    ADS  Article  Google Scholar 

  57. 57.

    Huisman, T. J. et al. Terahertz magneto-optics in the ferromagnetic semiconductor HgCdCr2Se4. Appl. Phys. Lett. 106, 132411 (2015).

    ADS  Article  Google Scholar 

  58. 58.

    Wadley, P. et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sci. Rep. 7, 11147 (2017).

  59. 59.

    Scholl, A. et al. Observation of antiferromagnetic domains in epitaxial thin films. Science 287, 1014–1016 (2000).

    ADS  Article  Google Scholar 

  60. 60.

    Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    ADS  Article  Google Scholar 

  61. 61.

    Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017).

    ADS  Article  Google Scholar 

  62. 62.

    Boyd, R. W. Nonlinear Optics (Elsevier, Amsterdam, 2008).

    Google Scholar 

  63. 63.

    Pershan, P. S. Nonlinear optical properties of solids: energy considerations. Phys. Rev. 130, 919–929 (1963).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. 64.

    Fiebig, M., Fröhlich, D., Krichevtsov, B. B. & Pisarev, R. V. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994).

    ADS  Article  Google Scholar 

  65. 65.

    Adler, E. Nonlinear optical frequency polarization in a dielectric. Phys. Rev. 134, A728–A733 (1964).

    ADS  Article  Google Scholar 

  66. 66.

    Lajzerowicz, J. & Vallade, M. Génération du second harmonique dans les substances magnétiques ordonnées. C. R. Seances Acad. Sci. B 264, 1819–1821 (1967).

    Google Scholar 

  67. 67.

    Agaltsov, A. M., Gorelik, V. S., Zvezdin, A. K., Murashov, V. A. & Rakov, D. N. Temperature dependence of the second harmonic generation in ferroelectric-magnetic bismuth ferrite. Sov. Phys. Short Commun. 5, 37–39 (1989).

    Google Scholar 

  68. 68.

    Reif, J., Zink, J. C., Schneider, C.-M. & Kirschner, J. Effects of surface magnetism on optical second harmonic generation. Phys. Rev. Lett. 67, 2878–2881 (1991).

    ADS  Article  Google Scholar 

  69. 69.

    Reif, J., Rau, C. & Matthias, E. Influence of magnetism on second harmonic generation. Phys. Rev. Lett. 71, 1931–1934 (1993).

    ADS  Article  Google Scholar 

  70. 70.

    Murashov, V. A. et al. Magnetoelectric (Bi, Ln)FeO3 compounds: crystal growth, structure and properties. Ferroelectrics 162, 11–21 (1994).

    Article  Google Scholar 

  71. 71.

    Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals. J. Opt. Soc. Am. B 22, 96–118 (2005).

  72. 72.

    Fiebig, M., Fröhlich, D., Lottermoser, T. & Kallenbach, S. Phase-resolved second-harmonic imaging with non-ideal laser sources. Opt. Lett. 29, 41–43 (2004).

    ADS  Article  Google Scholar 

  73. 73.

    Duong, N. P., Satoh, T. & Fiebig, M. Ultrafast manipulation of antiferromagnetism of NiO. Phys. Rev. Lett. 93, 117402 (2004).

    ADS  Article  Google Scholar 

  74. 74.

    Rubano, A. et al. Influence of laser pulse shaping on the ultrafast dynamics in antiferromagnetic NiO. Phys. Rev. B 82, 174431 (2010).

    ADS  Article  Google Scholar 

  75. 75.

    Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the morin transition in DyFeO3. Phys. Rev. Lett. 16, 097401 (2016).

    ADS  Article  Google Scholar 

  76. 76.

    Fiebig, M., Lottermoser, Th, Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    ADS  Article  Google Scholar 

  77. 77.

    Tonouchi, M. Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007).

    ADS  Article  Google Scholar 

  78. 78.

    Ulbricht, R., Hendry, E., Shan, J., Heinz, T. F. & Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 83, 543–586 (2011).

    ADS  Article  Google Scholar 

  79. 79.

    Hoffmann, M. C. in Terahertz Spectroscopy and Imaging (eds Peiponen, K.-E., Zeitler, A. & Kuwata-Gonokami, M.) Ch. 14 (Springer, Berlin, 2013).

  80. 80.

    Kampfrath, T., Tanaka, K. & Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nat. Photon. 7, 680–690 (2013).

    ADS  Article  Google Scholar 

  81. 81.

    Kampfrath, T. et al. Terahertz spin current pulses controlled by magnetic heterostructures. Nat. Nanotech. 8, 256–260 (2013).

  82. 82.

    Kanda, N. et al. The vectorial control of magnetization by light. Nat. Commun. 2, 362 (2011).

    Article  Google Scholar 

  83. 83.

    Nishitani, J., Kozuki, K., Nagashima, T. & Hangyo, M. Terahertz radiation from coherent antiferromagnetic magnons excited by femtosecond laser pulses. Appl. Phys. Lett. 96, 221906 (2010).

    ADS  Article  Google Scholar 

  84. 84.

    Nishitani, J., Nagashima, T. & Hangyo, M. Coherent control of terahertz radiation from antiferromagnetic magnons in NiO excited by optical laser pulses. Phys. Rev. B 85, 174439 (2012).

    ADS  Article  Google Scholar 

  85. 85.

    Mikhaylovskiy, R. V. Terahertz magnetization dynamics induced by femtosecond resonant pumping of Dy3+ subsystem in the multisublattice antiferromagnet DyFeO3. Phys. Rev. B 92, 094437 (2015).

    ADS  Article  Google Scholar 

  86. 86.

    Koopmans, B., van Kampen, M., Kohlhepp, J. T. & de Jonge, W. J. M. Ultrafast magneto-optics in nickel: magnetism or optics? Phys. Rev. Lett. 85, 844–847 (2000).

    ADS  Article  Google Scholar 

  87. 87.

    Kampfrath, T. et al. Ultrafast magneto-optical response of iron thin films. Phys. Rev. B 65, 104429 (2002).

    ADS  Article  Google Scholar 

  88. 88.

    Regensburger, H., Vollmer, R. & Kirschner, J. Time-resolved magnetization-induced second-harmonic generation from the Ni(110) surface. Phys. Rev. B 61, 14716 (2000).

    ADS  Article  Google Scholar 

  89. 89.

    Yamaguchi, K., Nakajima, M. & Suemoto, T. Coherent control of spin precession motion with impulsive magnetic fields of half-cycle terahertz radiation. Phys. Rev. Lett. 105, 237201 (2010).

    ADS  Article  Google Scholar 

  90. 90.

    Ney, O., Trzeciecki, M. & Huebner, W. Femtosecond dynamics of spin-dependent SHG response from NiO (001). Appl. Phys. B 74, 741–744 (2002).

    ADS  Article  Google Scholar 

  91. 91.

    Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250 (1996).

    ADS  Article  Google Scholar 

  92. 92.

    Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).

    ADS  Article  Google Scholar 

  93. 93.

    Thiele, J.-U., Buess, M. & Back, C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale. Appl. Phys. Lett. 85, 2857–2859 (2004).

    ADS  Article  Google Scholar 

  94. 94.

    Bergman, B. et al. Identifying growth mechanisms for laser-induced magnetization in FeRh. Phys. Rev. B 73, 060407(R) (2006).

    ADS  Article  Google Scholar 

  95. 95.

    Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in FeRh. Phys. Rev. Lett. 108, 087201 (2012).

    ADS  Article  Google Scholar 

  96. 96.

    Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203 (2012).

    ADS  Article  Google Scholar 

  97. 97.

    Ju, G. et al. Ultrafast time resolved photoinduced magnetization rotation in a ferromagnetic/antiferromagnetic exchange coupled system. Phys. Rev. Lett. 82, 3705–3708 (1999).

    ADS  Article  Google Scholar 

  98. 98.

    McCord, J., Kaltofen, R., Gemming, T., Hühne, R. & Schultz, L. Aspects of static and dynamic magnetic anisotropy in Ni81Fe19-NiO films. Phys. Rev. B 75, 134418 (2007).

    ADS  Article  Google Scholar 

  99. 99.

    Porat, A., Bar-Ad, S. & Schuller, I. K. Novel laser-induced dynamics in exchange-biased systems. Eur. Phys. Lett. 87, 67001 (2009).

    ADS  Article  Google Scholar 

  100. 100.

    Longa, F. D., Kohlhepp, J. T., de Jonge, W. J. M. & Koopmans, B. Resolving the genuine laser-induced ultrafast dynamics of exchange interaction in ferromagnet/antiferromagnet bilayers. Phys. Rev. B 81, 094435 (2010).

    ADS  Article  Google Scholar 

  101. 101.

    Ma, X. et al. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes. Nat. Commun. 6, 8800 (2015).

    Article  Google Scholar 

  102. 102.

    Saidl, V. et al. Investigation of exchange coupled bilayer Fe/CuMnAs by pump-probe experiment. Phys. Stat. Sol. RRL 11, 1600441 (2017).

    Article  Google Scholar 

  103. 103.

    Wienholdt, S., Hinzke, D. & Nowak, U. THz switching of antiferromagnets and ferrimagnets. Phys. Rev. Lett. 108, 247207 (2012).

    ADS  Article  Google Scholar 

  104. 104.

    Olejník, K et al. THz electrical writing speed in an antiferromagnetic memory. Sci. Adv. (in the press); preprint at https://arxiv.org/abs/1711.08444

  105. 105.

    Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin-transport and spin-torque in antiferromagnetic devices. Nat. Phys. https://doi.org/s41567-018-0062-7 (2018).

  106. 106.

    Battiato, M., Barbalinardo, G. & Oppeneer, P. M. Quantum theory of the inverse Faraday effect. Phys. Rev. B 89, 014413 (2014).

    ADS  Article  Google Scholar 

  107. 107.

    Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–79 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

P.N. acknowledges support from the Grant Agency of the Czech Republic under grant no. 14-37427G, the Ministry of Education of the Czech Republic under grants LM2015087 and LNSM-LNSpin, and the EU FET Open RIA grant no. 766566. A.V.K. acknowledges the Netherlands Foundation of Scientific Research (NWO) and the Ministry of Education and Science of the Russian Federation (project no. 14.Z50.31.0034). T.K. thanks the European Research Council for support through grant no. 681917 (TERAMAG) and the German Research Foundation through CRC/TRR 227. M.F. acknowledges support from the SNSF project 200021/147080 and by FAST, a division of the SNSF NCCR MUST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Němec.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Němec, P., Fiebig, M., Kampfrath, T. et al. Antiferromagnetic opto-spintronics. Nature Phys 14, 229–241 (2018). https://doi.org/10.1038/s41567-018-0051-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing