Synthetic antiferromagnetic spintronics

Abstract

Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of synthetic antiferromagnets.

Change history

  • 18 June 2018

    Owing to a technical error, this Perspective was originally published without its received and accepted dates in the HTML version; the dates “Received: 30 May 2017; Accepted: 17 January 2018” have now been included. The PDF is correct.

References

  1. 1.

    Gruünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Phys. Rev. Lett. 57, 2442–2445 (1986).

  2. 2.

    Majkrzak, C. F. et al. Phys. Rev. Lett. 56, 2700–2703 (1986).

  3. 3.

    Salamon, M. B. et al. Phys. Rev. Lett. 56, 259–262 (1986).

  4. 4.

    Slonczewski, J. C. Phys. Rev. B 39, 6995–7002 (1989).

  5. 5.

    Parkin, S. S. P., More, N. & Roche, K. P. Phys. Rev. Lett. 64, 2304–2307 (1990).

  6. 6.

    Edwards, D. M., Mathon, J., Muniz, R. B. & Phan, M. S. Phys. Rev. Lett. 67, 493–496 (1991).

  7. 7.

    Bruno, P. Phys. Rev. B 52, 411–439 (1995).

  8. 8.

    Baibich, M. N. et al. Phys. Rev. Lett. 61, 2472–2475 (1988).

  9. 9.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Phys. Rev. B 39, 4828–4830 (1989).

  10. 10.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

  11. 11.

    Valet, T. & Fert, A. Phys. Rev. B 48, 7099–7113 (1993).

  12. 12.

    Parkin, S. et al. Proc. IEEE 91, 661–679 (2003).

  13. 13.

    Bandiera, S. et al. IEEE Magn. Lett. 1, 3000204 (2010).

  14. 14.

    Smith, N., Maat, S., Carey, M. J. & Childress, J. R. Phys. Rev. Lett. 101, 247205 (2008).

  15. 15.

    Lee, S. W. & Lee, K. J. J. Appl. Phys. 109, 07C904 (2011).

  16. 16.

    Hayakawa, J. et al. Jpn J. Appl. Phys. 45, L1057–L1060 (2006).

  17. 17.

    Bergman, A. et al. Phys. Rev. B 83, 224429 (2011).

  18. 18.

    Houssameddine, D. et al. Appl. Phys. Lett. 96, 072511 (2010).

  19. 19.

    Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Nat. Nanotech. 11, 758–762 (2016).

  20. 20.

    Bi, C. et al. Phys. Rev. B 95, 104434 (2017).

  21. 21.

    Fechner, M., Zahn, P., Ostanin, S., Bibes, M. & Mertig, I. Phys. Rev. Lett. 108, 197206 (2012).

  22. 22.

    You, C.-Y. & Bader, S. D. J. Magn. Magn. Mater. 195, 488–500 (1999).

  23. 23.

    Newhouse-Illige, T. et al. Nat. Commun. 8, 15232 (2017).

  24. 24.

    Bender, S. A. & Tserkovnyak, Y. Phys. Rev. B 93, 064418 (2016).

  25. 25.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Nat. Mater. 11, 391–399 (2012).

  26. 26.

    Takei, S. & Tserkovnyak, Y. Rev. Lett. 112, 227201 (2014).

  27. 27.

    Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).

  28. 28.

    Herranz, D. et al. Phys. Rev. B 79, 134423 (2009).

  29. 29.

    Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Phys. Rev. B 90, 094411 (2014).

  30. 30.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

  31. 31.

    Komine, T. & Aono, T. AIP Adv. 6, 056409 (2016).

  32. 32.

    Lavrijsen, R. et al. Nature 493, 647–650 (2013).

  33. 33.

    Dzyaloshinskii, I. J. Phys. Chem. Solids 4, 241–255 (1958).

  34. 34.

    Moriya, T. Phys. Rev. 120, 91–98 (1960).

  35. 35.

    Roessler, U. K. & Bogdanov, A. N. Phys. Rev. B 69, 094405 (2004).

  36. 36.

    Zhang, X., Zhou, Y. & Ezawa, M. Nat. Commun. 7, 10293 (2015).

  37. 37.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys. 11, 453–461 (2015).

  38. 38.

    Lan, J., Yu, W. & Xiao, J. Nat. Commun. 8, 178 (2017).

  39. 39.

    Marrows, C. Preprint at https://arxiv.org/abs/1611.00744 (2016).

  40. 40.

    Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Phys. Rev. B 93, 140401 (2016). (R).

  41. 41.

    Fert, A., Cros, V. & Sampaio, J. Nat. Nanotech. 8, 152–156 (2013).

Download references

Acknowledgements

R.A.D. is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC), and is part of the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science. K.-J.L. was supported by the National Research Foundation of Korea (NRF) (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119). This work was in part supported by EU FET Open RIA Grant no. 766566.

Author information

Correspondence to R. A. Duine.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duine, R.A., Lee, K., Parkin, S.S.P. et al. Synthetic antiferromagnetic spintronics. Nature Phys 14, 217–219 (2018). https://doi.org/10.1038/s41567-018-0050-y

Download citation

Further reading