Abstract

Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 18 June 2018

    Owing to a technical error, this Perspective was originally published without its received and accepted dates in the HTML version; the dates “Received: 30 May 2017; Accepted: 17 January 2018” have now been included. The PDF is correct.

References

  1. 1.

    Gruünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Phys. Rev. Lett. 57, 2442–2445 (1986).

  2. 2.

    Majkrzak, C. F. et al. Phys. Rev. Lett. 56, 2700–2703 (1986).

  3. 3.

    Salamon, M. B. et al. Phys. Rev. Lett. 56, 259–262 (1986).

  4. 4.

    Slonczewski, J. C. Phys. Rev. B 39, 6995–7002 (1989).

  5. 5.

    Parkin, S. S. P., More, N. & Roche, K. P. Phys. Rev. Lett. 64, 2304–2307 (1990).

  6. 6.

    Edwards, D. M., Mathon, J., Muniz, R. B. & Phan, M. S. Phys. Rev. Lett. 67, 493–496 (1991).

  7. 7.

    Bruno, P. Phys. Rev. B 52, 411–439 (1995).

  8. 8.

    Baibich, M. N. et al. Phys. Rev. Lett. 61, 2472–2475 (1988).

  9. 9.

    Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Phys. Rev. B 39, 4828–4830 (1989).

  10. 10.

    Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).

  11. 11.

    Valet, T. & Fert, A. Phys. Rev. B 48, 7099–7113 (1993).

  12. 12.

    Parkin, S. et al. Proc. IEEE 91, 661–679 (2003).

  13. 13.

    Bandiera, S. et al. IEEE Magn. Lett. 1, 3000204 (2010).

  14. 14.

    Smith, N., Maat, S., Carey, M. J. & Childress, J. R. Phys. Rev. Lett. 101, 247205 (2008).

  15. 15.

    Lee, S. W. & Lee, K. J. J. Appl. Phys. 109, 07C904 (2011).

  16. 16.

    Hayakawa, J. et al. Jpn J. Appl. Phys. 45, L1057–L1060 (2006).

  17. 17.

    Bergman, A. et al. Phys. Rev. B 83, 224429 (2011).

  18. 18.

    Houssameddine, D. et al. Appl. Phys. Lett. 96, 072511 (2010).

  19. 19.

    Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Nat. Nanotech. 11, 758–762 (2016).

  20. 20.

    Bi, C. et al. Phys. Rev. B 95, 104434 (2017).

  21. 21.

    Fechner, M., Zahn, P., Ostanin, S., Bibes, M. & Mertig, I. Phys. Rev. Lett. 108, 197206 (2012).

  22. 22.

    You, C.-Y. & Bader, S. D. J. Magn. Magn. Mater. 195, 488–500 (1999).

  23. 23.

    Newhouse-Illige, T. et al. Nat. Commun. 8, 15232 (2017).

  24. 24.

    Bender, S. A. & Tserkovnyak, Y. Phys. Rev. B 93, 064418 (2016).

  25. 25.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Nat. Mater. 11, 391–399 (2012).

  26. 26.

    Takei, S. & Tserkovnyak, Y. Rev. Lett. 112, 227201 (2014).

  27. 27.

    Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).

  28. 28.

    Herranz, D. et al. Phys. Rev. B 79, 134423 (2009).

  29. 29.

    Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Phys. Rev. B 90, 094411 (2014).

  30. 30.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

  31. 31.

    Komine, T. & Aono, T. AIP Adv. 6, 056409 (2016).

  32. 32.

    Lavrijsen, R. et al. Nature 493, 647–650 (2013).

  33. 33.

    Dzyaloshinskii, I. J. Phys. Chem. Solids 4, 241–255 (1958).

  34. 34.

    Moriya, T. Phys. Rev. 120, 91–98 (1960).

  35. 35.

    Roessler, U. K. & Bogdanov, A. N. Phys. Rev. B 69, 094405 (2004).

  36. 36.

    Zhang, X., Zhou, Y. & Ezawa, M. Nat. Commun. 7, 10293 (2015).

  37. 37.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys. 11, 453–461 (2015).

  38. 38.

    Lan, J., Yu, W. & Xiao, J. Nat. Commun. 8, 178 (2017).

  39. 39.

    Marrows, C. Preprint at https://arxiv.org/abs/1611.00744 (2016).

  40. 40.

    Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Phys. Rev. B 93, 140401 (2016). (R).

  41. 41.

    Fert, A., Cros, V. & Sampaio, J. Nat. Nanotech. 8, 152–156 (2013).

Download references

Acknowledgements

R.A.D. is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC), and is part of the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science. K.-J.L. was supported by the National Research Foundation of Korea (NRF) (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119). This work was in part supported by EU FET Open RIA Grant no. 766566.

Author information

Affiliations

  1. Institute for Theoretical Physics, Universiteit Utrecht, Utrecht, The Netherlands

    • R. A. Duine
  2. Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

    • R. A. Duine
  3. Department of Materials Science and Engineering, Korea University, Seoul, Korea

    • Kyung-Jin Lee
  4. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea

    • Kyung-Jin Lee
  5. Max Planck Institute for Microstructure Physics, Halle (Saale), Germany

    • Stuart S. P. Parkin
  6. IBM Research — Almaden, San Jose, CA, USA

    • Stuart S. P. Parkin
  7. Institute of Physics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

    • Stuart S. P. Parkin
  8. Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD, USA

    • M. D. Stiles

Authors

  1. Search for R. A. Duine in:

  2. Search for Kyung-Jin Lee in:

  3. Search for Stuart S. P. Parkin in:

  4. Search for M. D. Stiles in:

Corresponding author

Correspondence to R. A. Duine.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0050-y