Perspective | Published:

Antiferromagnetic spin textures and dynamics

Nature Physicsvolume 14pages213216 (2018) | Download Citation

Abstract

Antiferromagnets provide greater stability than their ferromagnetic counterparts, but antiferromagnetic spin textures and nanostructures also exhibit more complex, and often faster, dynamics, offering new functionalities for spintronics devices.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Wadley, P. et al. Science 351, 587–590 (2016).

  2. 2.

    Keffer, F. & Kittel, C. Phys. Rev. 85, 329–337 (1952).

  3. 3.

    Ross, P. et al. J. Appl. Phys. 118, 233907 (2015).

  4. 4.

    Hagiwara, M. & Katsumata, K. Int. J. Infrared Millim. Waves 20, 617–622 (1999).

  5. 5.

    Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).

  6. 6.

    Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).

  7. 7.

    Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).

  8. 8.

    Gomonay, H. & Loktev, V. J. Magn. Soc. Jpn 32, 535–539 (2008).

  9. 9.

    Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Phys. Rev. B 91, 064423 (2015).

  10. 10.

    Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17 (2014).

  11. 11.

    Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Phys. Rev. Lett. 113, 057601 (2014).

  12. 12.

    Cheng, R., Xiao, D. & Brataas, A. Phys. Rev. Lett. 116, 207603 (2016).

  13. 13.

    Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).

  14. 14.

    Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Science 335, 196–199 (2012).

  15. 15.

    Bode, M. et al. Nat. Mater. 5, 477–481 (2006).

  16. 16.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Nat. Phys. https://doi.org/s41567-018-0064-5 (2018).

  17. 17.

    Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep 6, 24795 (2016).

  18. 18.

    Raičević, I. et al. Phys. Rev. Lett. 106, 227206 (2011).

  19. 19.

    Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).

  20. 20.

    Brataas, A., Skarsvåg, H., Tveten, E. G. & Fjærbu, E. L. Phys. Rev. B 92, 180414(R) (2015).

  21. 21.

    Rodrigues, D. R., Everschor-Sitte, K., Tretiakov, O. A., Sinova, J. & Abanov, A. Phys. Rev. B 95, 174408 (2017).

  22. 22.

    Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Phys. Rev. Lett. 112, 147204 (2014).

  23. 23.

    Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Phys. Rev. B 90, 104406 (2014).

  24. 24.

    Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).

  25. 25.

    Velkov, H. et al. New J. Phys. 18, 075016 (2016).

  26. 26.

    Wang, H., Du, C., Hammel, P. C. & Yang, F. Phys. Rev. Lett. 113, 097202 (2014).

  27. 27.

    Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).

  28. 28.

    Moriyama, T. et al. Preprint at https://arxiv.org/abs/1411.4100 (2014).

  29. 29.

    Merodio, P. et al. Appl. Phys. Lett. 104, 032406 (2014).

  30. 30.

    Frangou, L. et al. Phys. Rev. Lett. 116, 077203 (2016).

  31. 31.

    Moriyama, T. et al. Appl. Phys. Lett. 106, 162406 (2015).

  32. 32.

    Lin, W., Chen, K., Zhang, S. & Chien, C. L. Phys. Rev. Lett. 116, 186601 (2016).

  33. 33.

    Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Phys. Rev. B 93, 054412 (2016).

  34. 34.

    Saglam, H. et al. Phys. Rev. B 94, 140412(R) (2016).

  35. 35.

    Wu, S. M. et al. Phys. Rev. Lett. 116, 097204 (2016).

  36. 36.

    Seki, S. et al. Phys. Rev. Lett. 115, 266601 (2015).

  37. 37.

    Qiu, Z. et al. Nat. Commun. 7, 12670 (2016).

  38. 38.

    Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Phys. Rev. B 93, 224421 (2016).

  39. 39.

    Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Phys. Rev. B 92, 020409 (2015).

Download references

Acknowledgements

O.G. acknowledges the Alexander von Humboldt Foundation, the ERC Synergy Grant SC2 (no. 610115), EU FET Open RIA Grant no. 766566, and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X. A.B. acknowledges the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633 ‘QuSpin’ and the European Research Council via Advanced Grant no. 669442 ‘Insulatronics’. V.B. acknowledges the financial support of ANR (ANR-15-CE24-0015-01) and of KAUST (OSR-2015-CRG4-2626). Y.T. acknowledges FAME (an SRC STARnet centre sponsored by MARCO and DARPA).

Author information

Affiliations

  1. Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, Germany

    • O. Gomonay
  2. National Technical University of Ukraine (KPI), Kyiv, Ukraine

    • O. Gomonay
  3. SPINTEC, Univ. Grenoble Alpes/CNRS/INAC-CEA, Grenoble, France

    • V. Baltz
  4. Center for Quantum Spintronics, Departments of Physics, Norwegian University of Science and Technology, Trondheim, Norway

    • A. Brataas
  5. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

    • Y. Tserkovnyak

Authors

  1. Search for O. Gomonay in:

  2. Search for V. Baltz in:

  3. Search for A. Brataas in:

  4. Search for Y. Tserkovnyak in:

Corresponding author

Correspondence to O. Gomonay.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41567-018-0049-4

Further reading