Abstract
Antiferromagnets provide greater stability than their ferromagnetic counterparts, but antiferromagnetic spin textures and nanostructures also exhibit more complex, and often faster, dynamics, offering new functionalities for spintronics devices.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
High-speed metamagnetic switching of FeRh through Joule heating
Scientific Reports Open Access 21 December 2022
-
Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films
Nature Communications Open Access 30 November 2022
-
Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
Nature Communications Open Access 17 October 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Wadley, P. et al. Science 351, 587–590 (2016).
Keffer, F. & Kittel, C. Phys. Rev. 85, 329–337 (1952).
Ross, P. et al. J. Appl. Phys. 118, 233907 (2015).
Hagiwara, M. & Katsumata, K. Int. J. Infrared Millim. Waves 20, 617–622 (1999).
Gomonay, O., Jungwirth, T. & Sinova, J. Phys. Rev. Lett. 117, 017202 (2016).
Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).
Selzer, S., Atxitia, U., Ritzmann, U., Hinzke, D. & Nowak, U. Phys. Rev. Lett. 117, 107201 (2016).
Gomonay, H. & Loktev, V. J. Magn. Soc. Jpn 32, 535–539 (2008).
Cheng, R., Daniels, M. W., Zhu, J.-G. & Xiao, D. Phys. Rev. B 91, 064423 (2015).
Gomonay, E. V. & Loktev, V. M. Low Temp. Phys. 40, 17 (2014).
Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Phys. Rev. Lett. 113, 057601 (2014).
Cheng, R., Xiao, D. & Brataas, A. Phys. Rev. Lett. 116, 207603 (2016).
Železný, J. et al. Phys. Rev. Lett. 113, 157201 (2014).
Loth, S., Baumann, S., Lutz, C. P., Eigler, D. M. & Heinrich, A. J. Science 335, 196–199 (2012).
Bode, M. et al. Nat. Mater. 5, 477–481 (2006).
Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Nat. Phys. https://doi.org/s41567-018-0064-5 (2018).
Zhang, X., Zhou, Y. & Ezawa, M. Sci. Rep 6, 24795 (2016).
Raičević, I. et al. Phys. Rev. Lett. 106, 227206 (2011).
Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phys. Rev. Lett. 106, 107206 (2011).
Brataas, A., Skarsvåg, H., Tveten, E. G. & Fjærbu, E. L. Phys. Rev. B 92, 180414(R) (2015).
Rodrigues, D. R., Everschor-Sitte, K., Tretiakov, O. A., Sinova, J. & Abanov, A. Phys. Rev. B 95, 174408 (2017).
Tveten, E. G., Qaiumzadeh, A. & Brataas, A. Phys. Rev. Lett. 112, 147204 (2014).
Kim, S. K., Tserkovnyak, Y. & Tchernyshyov, O. Phys. Rev. B 90, 104406 (2014).
Barker, J. & Tretiakov, O. A. Phys. Rev. Lett. 116, 147203 (2016).
Velkov, H. et al. New J. Phys. 18, 075016 (2016).
Wang, H., Du, C., Hammel, P. C. & Yang, F. Phys. Rev. Lett. 113, 097202 (2014).
Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).
Moriyama, T. et al. Preprint at https://arxiv.org/abs/1411.4100 (2014).
Merodio, P. et al. Appl. Phys. Lett. 104, 032406 (2014).
Frangou, L. et al. Phys. Rev. Lett. 116, 077203 (2016).
Moriyama, T. et al. Appl. Phys. Lett. 106, 162406 (2015).
Lin, W., Chen, K., Zhang, S. & Chien, C. L. Phys. Rev. Lett. 116, 186601 (2016).
Rezende, S. M., Rodríguez-Suárez, R. L. & Azevedo, A. Phys. Rev. B 93, 054412 (2016).
Saglam, H. et al. Phys. Rev. B 94, 140412(R) (2016).
Wu, S. M. et al. Phys. Rev. Lett. 116, 097204 (2016).
Seki, S. et al. Phys. Rev. Lett. 115, 266601 (2015).
Qiu, Z. et al. Nat. Commun. 7, 12670 (2016).
Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Phys. Rev. B 93, 224421 (2016).
Takei, S., Moriyama, T., Ono, T. & Tserkovnyak, Y. Phys. Rev. B 92, 020409 (2015).
Acknowledgements
O.G. acknowledges the Alexander von Humboldt Foundation, the ERC Synergy Grant SC2 (no. 610115), EU FET Open RIA Grant no. 766566, and the Transregional Collaborative Research Center (SFB/TRR) 173 SPIN+X. A.B. acknowledges the Research Council of Norway through its Centres of Excellence funding scheme, project number 262633 ‘QuSpin’ and the European Research Council via Advanced Grant no. 669442 ‘Insulatronics’. V.B. acknowledges the financial support of ANR (ANR-15-CE24-0015-01) and of KAUST (OSR-2015-CRG4-2626). Y.T. acknowledges FAME (an SRC STARnet centre sponsored by MARCO and DARPA).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gomonay, O., Baltz, V., Brataas, A. et al. Antiferromagnetic spin textures and dynamics. Nature Phys 14, 213–216 (2018). https://doi.org/10.1038/s41567-018-0049-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-018-0049-4
This article is cited by
-
Coherent antiferromagnetic spintronics
Nature Materials (2023)
-
High-speed metamagnetic switching of FeRh through Joule heating
Scientific Reports (2022)
-
Emergence of zero-field non-synthetic single and interchained antiferromagnetic skyrmions in thin films
Nature Communications (2022)
-
Anomalous Hall antiferromagnets
Nature Reviews Materials (2022)
-
Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3
Nature Communications (2022)