Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoexcitation circular dichroism in chiral molecules

Abstract

Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral discrimination schemes in randomly oriented molecular ensembles.
Fig. 2: Theoretical analysis of the electron chiral dynamics in (1S)-(+)-fenchone.
Fig. 3: PXECD in fenchone molecules.
Fig. 4: Time-resolved PXECD in fenchone and camphor.
Fig. 5: Sensitivity of PXECD in (1S)-(+)-fenchone to the evolution of the chiral molecular structure.

Similar content being viewed by others

References

  1. Cotton, A. Recherches sur l’absorption et la dispersion de la lumière par les milieux doués du pouvoir rotatoire. J. Phys. Theor. Appl. 5, 237–244 (1896).

    Article  MATH  Google Scholar 

  2. Barron, L. D. Molecular Light Scattering and Optical Activity. 2nd edn (Cambridge University Press: Cambridge, 2004).

    Book  Google Scholar 

  3. Berova, N, Nakanishi, K. & Woody, R. Circular Dichroism: Principles and Applications. 2nd edn, (Wiley: New York, NY, 2000).

    Google Scholar 

  4. Ritchie, B. Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions. Phys. Rev. A 13, 1411–1415 (1976).

    Article  ADS  Google Scholar 

  5. Powis, I. Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid. J. Chem. Phys. 112, 301–310 (2000).

    Article  ADS  Google Scholar 

  6. Böwering, N. et al. Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. Phys. Rev. Lett. 86, 1187–1190 (2001).

    Article  ADS  Google Scholar 

  7. Lux, C. et al. Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. Angew. Chem. Int. Ed. 51, 5001–5005 (2012).

    Article  Google Scholar 

  8. Lehmann, C. S., Ram, N. B., Powis, I. & Janssen, M. H. M. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. J. Chem. Phys. 139, 234–307 (2013).

    Article  Google Scholar 

  9. Pitzer, M. et al. Direct determination of absolute molecular stereochemistry in gas phase by coulomb explosion imaging. Science 341, 1096–1100 (2013).

    Article  ADS  Google Scholar 

  10. Herwig, P. et al. Imaging the absolute configuration of a chiral epoxide in the gas phase. Science 342, 1084–1086 (2013).

    Article  ADS  Google Scholar 

  11. Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013).

    Article  ADS  Google Scholar 

  12. Yachmenev, A. & Yurchenko, S. N. Detecting chirality in molecules by linearly polarized laser fields. Phys. Rev. Lett. 117, 033001 (2016).

    Article  ADS  Google Scholar 

  13. Comby, A. et al. Relaxation dynamics in photoexcited chiral molecules studied by time-resolved photoelectron circular dichroism: toward chiral femtochemistry. J. Phys. Chem. Lett. 7, 4514–4519 (2016).

    Article  Google Scholar 

  14. Nahon, L., Garcia, G. A. & Powis, I. Valence shell one-photon photoelectron circular dichroism in chiral systems. J. Electron Spectrosc. Relat. Phenom. 204, 322–334 (2015).

    Article  Google Scholar 

  15. Nahon, L. et al. Determination of accurate electron chiral asymmetries in fenchone and camphor in the VUV range: sensitivity to isomerism and enantiomeric purity. Phys. Chem. Chem. Phys. 18, 12696–12706 (2016).

    Article  Google Scholar 

  16. Barron, L. D. True and false chirality and absolute asymmetric synthesis. J. Am. Chem. Soc. 108, 5539–5542 (1986).

    Article  Google Scholar 

  17. Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    Article  ADS  Google Scholar 

  18. Cherepkov, N. A. & Raşeev, G. Linear dichroism in the angular distribution of photoelectrons. J. Chem. Phys. 103, 8238–8246 (1995).

    Article  ADS  Google Scholar 

  19. Garcia, G. A., Nahon, L., Daly, S. & Powis, I. Vibrationally induced inversion of photoelectron forward–backward asymmetry in chiral molecule photoionization by circularly polarized light. Nat. Commun. 4, 2132 (2013).

    Article  ADS  Google Scholar 

  20. Stener, M., Di Tommaso, D., Fronzoni, G., Decleva, P. & Powis, I. Theoretical study on the circular dichroism in core and valence photoelectron angular distributions of camphor enantiomers. J. Chem. Phys. 124, 024326 (2006).

    Article  ADS  Google Scholar 

  21. Ulrich, V. et al. Giant chiral asymmetry in the C1s core level photoemission from randomly oriented fenchone enantiomers. J. Phys. Chem. A 112, 3544–3549 (2008).

    Article  Google Scholar 

  22. Wang, T. et al. Femtosecond single-shot imaging of nanoscale ferromagnetic order in Co/Pd multilayers using resonant x-ray holography. Phys. Rev. Lett. 108, 267403 (2012).

    Article  ADS  Google Scholar 

  23. Spezzani, C. et al. Coherent light with tunable polarization from single-pass free-electron lasers. Phys. Rev. Lett. 107, 084801 (2011).

    Article  ADS  Google Scholar 

  24. Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  25. Fleischer, A., Kfir, O., Diskin, T., Sidorenko, P. & Cohen, O. Spin angular momentum and tunable polarization in high-harmonic generation. Nat. Photon. 8, 543–549 (2014).

    Article  ADS  Google Scholar 

  26. Ferré, A. et al. A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments. Nat. Photon. 9, 93–98 (2015).

    Article  ADS  Google Scholar 

  27. Lux, C., Wollenhaupt, M., Sarpe, C. & Baumert, T. Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses. ChemPhysChem 16, 115–137 (2015).

    Article  Google Scholar 

  28. Eibenberger, S., Doyle, J. & Patterson, D. Enantiomer-specific state transfer of chiral molecules. Phys. Rev. Lett. 118, 123002 (2017).

    Article  ADS  Google Scholar 

  29. Bredtmann, T., Ivanov, M. & Dixit, G. X-ray imaging of chemically active valence electrons during a pericyclic reaction. Nat. Commun. 5, 5589 (2014).

    Article  ADS  Google Scholar 

  30. Lunnemann, S., Kuleff, A. I. & Cederbaum, L. S. Ultrafast charge migration in 2-phenylethyl-N,N-dimethylamine. Chem. Phys. Lett. 450, 232–235 (2008).

    Article  ADS  Google Scholar 

  31. Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

    Article  ADS  Google Scholar 

  32. Remacle, F. & Levine, R. D. An electronic time scale in chemistry. Proc. Natl Acad. Sci. USA 103, 6793–6798 (2006).

    Article  ADS  Google Scholar 

  33. Kuleff, A. I. & Cederbaum, L. S. Charge migration in different conformers of glycine: The role of nuclear geometry. Chem. Phys. 338, 320–328 (2007).

    Article  ADS  Google Scholar 

  34. Lepine, F. Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: Fact or fiction? Nat. Photon. 8, 195–204 (2014).

    Article  ADS  Google Scholar 

  35. Leone, S. R. et al. What will it take to observe processes in ‘real time’? Nat. Photon. 8, 162–166 (2014).

    Article  ADS  Google Scholar 

  36. Kuleff, A. I. & Cederbaum, L. S. Ultrafast correlation-driven electron dynamics. J. Phys. B 47, 124002 (2014).

    Article  ADS  Google Scholar 

  37. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    Article  ADS  Google Scholar 

  38. Weinkauf, R., Schlag, E. W., Martinez, T. J. & Levine, R. D. Nonstationary electronic states and site-selective reactivity. J. Phys. Chem. A 101, 7702–7710 (1997).

    Article  Google Scholar 

  39. Pulm, F., Schramm, J., Hormes, J., Grimme, S. & Peyerimhoff, S. D. Theoretical and experimental investigations of the electronic circular dichroism and absorption spectra of bicyclic ketones. Chem. Phys. 224, 143–155 (1997).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Bouillaud and L. Merzeau for technical assistance. We thank M. Ivanov, F. Morales, A. Stolow and T. Elsaesser for stimulating discussions. We acknowledge financial support from the Agence Nationale pour la Recherche (ANR-14-CE32-0014 MISFITS), the University of Bordeaux and the Conseil Regional de Nouvelle-Aquitaine (2.1.3-09010502 COLA2 project). Z.M. and O.S. gratefully acknowledge the support from Deutsche Forschungsgemeinschaft, project Sm 292-5/1, A.G.H. gratefully acknowledges the support from Deutsche Forschungsgemeinschaft, projects IV 152/7-1 and HA 8552/2-1. A.F.O. and O.S. gratefully acknowledge the MEDEA project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement no. 641789 (H2020-MSCA-ITN-2014-641789-MEDEA (Marie Skłodowska Curie Innovative Training Networks)). S.B. acknowledges the support of a NSERC Vanier Canada Graduate Scholarship. R.G. acknowledges financial support from the Agence Nationale pour la Recherche through the XSTASE project (ANR-14-CE32-0010). The authors gratefully acknowledge the support of their collaboration through European Cooperation in Science and Technology (COST), programme CM1204 XLIC. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme no. 682978 - EXCITERS.

Author information

Authors and Affiliations

Authors

Contributions

S.B., A.C., R.G., Y.M. and V.B., performed the experiment. D.D. and S.P. operated the laser system. S.B., A.C., B.F., G.A.G., L.N., B.P., Y.M. and V.B. analysed the data. B.F. and B.P. performed the molecular geometry and dynamical calculations. A.G.H., A.F.O., Z.M. and O.S. developed the analytical theory, A.F.O. and O.S. derived triple-product chirality measures for PXCD and PXECD and analysed their connection and properties. S.B. wrote the first version of the manuscript; all authors contributed to writing the manuscript.

Corresponding authors

Correspondence to B. Pons, Y. Mairesse or O. Smirnova.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–12, Supplementary Note, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beaulieu, S., Comby, A., Descamps, D. et al. Photoexcitation circular dichroism in chiral molecules. Nature Phys 14, 484–489 (2018). https://doi.org/10.1038/s41567-017-0038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0038-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing