Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Femtosecond activation of magnetoelectricity

Abstract

In magnetoelectric and multiferroic materials, the magnetic degree of freedom can be controlled by electric field, and vice versa. A significant amount of research has been devoted to exploiting this effect for magnetoelectric data storage and manipulation devices driven by d.c. electric fields1,2,3,4. Aiming at ever-faster schemes of magnetoelectric manipulation, a promising alternative approach offers similar control on a femtosecond timescale, relying on laser pulses4,5,6 to control both the charge7,8 and the magnetic9,10 order of solids. Here we photo-induce magnetoelectricity and multiferroicity in CuB2O4 on a sub-picosecond timescale. This process is triggered by the resonant optical generation of the highest-energy magnetic excitations—magnons with wavevectors near the edges of the Brillouin zone. The most striking consequence of the photo-excitation is that the absorption of light becomes non-reciprocal, which means that the material exhibits a different transparency for two opposite directions of propagation of light. The photo-induced magnetoelectricity does not show any decay on the picosecond timescale. Our findings uncover a path for ultrafast manipulations of the intrinsic coupling between charges and spins in multiferroics4, which may reveal unexplored magnetic configurations and unravel new functionalities in terms of femtosecond optical control of magnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram and experimental configurations.
Fig. 2: Spectrum of the pump beam and absorption of CuB2O4.
Fig. 3: Normalized transient transmissivity as a function of the fluence.
Fig. 4: Normalized transient transmissivity as a function of the magnetic field.
Fig. 5: Schematic representation of the relaxation dynamics.

Similar content being viewed by others

References

  1. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D. Appl. Phys. 38, R123–R152 (2005).

    Article  ADS  Google Scholar 

  2. Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985–13992 (2017).

    Article  ADS  Google Scholar 

  3. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    Article  ADS  Google Scholar 

  4. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 16046–16060 (2016).

  5. Sheu, Y. M. et al. Using ultrashort optical pulses to couple ferroelectric and ferromagnetic order in an oxide heterostructure. Nat. Commun. 5, 5832 (2014).

    Article  Google Scholar 

  6. Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 037203–037208 (2012).

    Article  ADS  Google Scholar 

  7. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  ADS  Google Scholar 

  8. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    Article  ADS  Google Scholar 

  9. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    Article  ADS  Google Scholar 

  10. Bossini, D., Belotelov, V. I., Zvezdin, A. K., Kalish, A. N. & Kimel, A. V. Magnetoplasmonics and femtosecond optomagnetism at the nanoscale. ACS Photon 3, 1385–1400 (2016).

    Article  Google Scholar 

  11. Martinez-Ripoll, M., Martnez-Carrera, S. & Garca-Blanco, S. The crystal structure of copper metaborate, CuB2O4. Acta Crystallogr. B 27, 677–681 (1971).

    Article  Google Scholar 

  12. Petrakovskii, G. et al. Weak ferromagnetism in CuB2O4 copper metaborate. J. Magn. Magn. Mater. 205, 105–109 (1999).

    Article  ADS  Google Scholar 

  13. Martynov, S., Petrakovskii, G., Boehm, M., Roessli, B. & Kulda, J. Spin-wave spectrum of copper metaborate in the incommensurate phase. J. Magn. Magn. Mater. 299, 75–81 (2006).

    Article  ADS  Google Scholar 

  14. Khanh, N. D. et al. Magnetic control of electric polarization in the noncentrosymmetric compound (Cu,Ni)B2O4. Phys. Rev. B 87, 184416–184421 (2013).

    Article  ADS  Google Scholar 

  15. Saito, M., Arima, T., Ishikawa, K. & Taniguchi, K. Magnetic control of crystal chirality and the existence of a large magneto-optical dichroism effect in CuB2O4. Phys. Rev. Lett. 101, 117402 (2008).

    Article  ADS  Google Scholar 

  16. Toyoda, S. et al. One-way transparency of light in multiferroic CuB2O4. Phys. Rev. Lett. 115, 267207 (2015).

    Article  ADS  Google Scholar 

  17. Toyoda, S., Abe, N. & Arima, T. Gigantic directional asymmetry of luminescence in multiferroic CuB2O4. Phys. Rev. B 93, 201109 (2016).

    Article  ADS  Google Scholar 

  18. Peyghambarian, N., Koch, S. W. & Mysyrowicz, A. Introduction to Semiconductor Optics. (Prentice Hall, Englewood Cliffs, NJ/London, 1993).

    Google Scholar 

  19. TanabeY.. & Aoyagi, A. K. Excitons in Magnetic Insulators. (North-Holland, 1982).

  20. Macfarlane, R. M. & Allen, J. W. Exciton bands in antiferromagnetic Cr2O3. Phys. Rev. B 4, 3054–3067 (1971).

    Article  ADS  Google Scholar 

  21. Moriya, T., Tanabe, Y. & Sugano, S. Magnon-induced electric dipole transition moment. Phys. Rev. Lett. 15, 1023–1025 (1965).

    Article  ADS  Google Scholar 

  22. Fiebig, M., Sänger, I. & Pisarev, R. V. Magnetic phase diagram of CuB2O4. J. Appl. Phys. 93, 6960–6963 (2003).

    Article  ADS  Google Scholar 

  23. LandauL. D.. & Lifshitz, E. Electrodynamics of Continuous Media. 2nd edn, (Elsevier, 1984).

  24. Kimel, A. V., Pisarev, R. V., Hohlfeld, J. & Rasing, T. ultrafast quenching of the antiferromagnetic order in FeBO3: direct optical probing of the phonon–magnon coupling. Phys. Rev. Lett. 89, 287401–287405 (2002).

    Article  ADS  Google Scholar 

  25. Bossini, D., Kalashnikova, A. M., Pisarev, R. V., Rasing, T. & Kimel, A. V. Controlling coherent and incoherent spin dynamics by steering the photo-induced energy flow. Phys. Rev. B 89, 060405 (2014).

    Article  ADS  Google Scholar 

  26. Afanasiev, D. et al. Control of the ultrafast photoinduced magnetization across the Morin transition in DyFeO3. Phys. Rev. Lett. 116, 097401 (2016).

    Article  ADS  Google Scholar 

  27. Bossini, D. et al. Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons. Nat. Commun. 7, 10645–10653 (2016).

    Article  ADS  Google Scholar 

  28. Bossini, D. & Rasing, T. Femtosecond optomagnetism in dielectric antiferromagnets. Phys. Scr. 92, 024002 (2017).

    Article  ADS  Google Scholar 

  29. Ivanov, V. G. et al. Phonon and magnon Raman scattering in CuB2O4. Phys. Rev. B 88, 094301 (2013).

    Article  ADS  Google Scholar 

  30. Hashimoto, Y. et al. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun. 8, 15859–15865 (2017).

    Article  ADS  Google Scholar 

  31. Pisarev, R. V., Kalashnikova, A. M., Schöps, O. & Bezmaternykh, L. N. Electronic transitions and genuine crystal-field parameters in copper metaborate CuB2O4. Phys. Rev. B 84, 075160 (2011).

    Article  ADS  Google Scholar 

  32. Brito Cruz, C. H., Gordon, J. P., Becker, P. C., Fork, R. L. & Shank, C. V. Dynamics of spectral hole burning. IEEE J. Quantum Electron. 24, 261–269 (1988).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Omachi for the time-resolved photoluminescence measurements and N. Nemoto, Y. Arashida and H. Sakurai for technical support. This work was supported by JSPS KAKENHI grant no. 26247049 and the Photon Frontier Network Program funded by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. D.B was supported by the Japanese Society for Promotion of Science (JSPS) ‘Postdoctoral Fellowship for Overseas Researcher’ no. P16326. S.T was also supported by JSPS through the Program for Leading Graduate Schools (MERIT) and a Grant-in-Aid for JSPS Fellows (14J06840).

Author information

Authors and Affiliations

Authors

Contributions

D.B. conceived the project with contributions from K.K., T.A. and M.K-G. The sample was grown and characterized by S.T. D.B. performed the time-resolved experiments and analysed the data. All the authors took part in regular discussions and contributed to the writing of the manuscript.

Corresponding author

Correspondence to D. Bossini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Notes

Supplementary Notes 1–3, Supplementary References.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossini, D., Konishi, K., Toyoda, S. et al. Femtosecond activation of magnetoelectricity. Nature Phys 14, 370–374 (2018). https://doi.org/10.1038/s41567-017-0036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0036-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing