Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures


In two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), new electronic phenomena such as tunable bandgaps1,2,3 and strongly bound excitons and trions emerge from strong many-body effects4,5,6, beyond the spin and valley degrees of freedom induced by spin–orbit coupling and by lattice symmetry7. Combining single-layer TMDs with other 2D materials in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these many-body effects, by means of engineered interlayer interactions8,9,10. Here, we use micro-focused angle-resolved photoemission spectroscopy (microARPES) and in situ surface doping to manipulate the electronic structure of single-layer WS2 on hexagonal boron nitride (WS2/h-BN). Upon electron doping, we observe an unexpected giant renormalization of the spin–orbit splitting of the single-layer WS2 valence band, from 430 meV to 660 meV, together with a bandgap reduction of at least 325 meV, attributed to the formation of trionic quasiparticles. These findings suggest that the electronic, spintronic and excitonic properties are widely tunable in 2D TMD/h-BN heterostructures, as these are intimately linked to the quasiparticle dynamics of the materials11,12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spatially resolved electronic structure mapping of a WS2/h-BN heterostructure supported on TiO2.
Fig. 2: Electronic structure of strongly electron-doped WS2/h-BN.
Fig. 3: Evolution of single-layer WS2 VBM and CBM dispersion with charge-carrier density.
Fig. 4: Quasiparticle dynamics in doped single-layer WS2.


  1. 1.

    Chernikov, A. et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 115, 126802 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Liang, Y. & Yang, L. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 114, 063001 (2015).

    ADS  Article  Google Scholar 

  3. 3.

    Chernikov, A., Ruppert, C., Hill, H., Rigosi, A. & Heinz, T. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Qiu, D., Jornada, F. & Louie, S. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Mak, K. F. et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

    ADS  Article  Google Scholar 

  7. 7.

    Xiao, D., Liu, G., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other Group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Geim, A. & Grigorieva, I. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  9. 9.

    Ugeda, M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Larentis, S. et al. Band offset and negative compressibility in graphene–MoS2 heterostructures. Nano Lett. 14, 2039–2045 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  12. 12.

    Kormányos, A. k·p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2, 049501 (2015).

    Article  Google Scholar 

  13. 13.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Ferreiros, Y. & Cortijo, A. Large conduction band and Fermi velocity spin splitting due to Coulomb interactions in single-layer MoS2. Phys. Rev. B 90, 195426 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Bostwick, A., Ohta, T., Seyller, T., Horn, K. & Rotenberg, E. Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007).

    Article  Google Scholar 

  16. 16.

    Zhang, Y. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 9, 111–115 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Zhang, Y. et al. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett. 16, 2485–2491 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Miwa, J. et al. Electronic structure of epitaxial single-layer MoS2. Phys. Rev. Lett. 114, 046802 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 106801 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Dean, C. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Wang, E. et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat. Phys. 12, 1111–1115 (2016).

    Article  Google Scholar 

  23. 23.

    Ulstrup, S. et al. Spatially resolved electronic properties of single-layer WS2 on transition metal oxides. ACS Nano 10, 10058–10067 (2016).

    Article  Google Scholar 

  24. 24.

    Dendzik, M. et al. Growth and electronic structure of epitaxial single-layer WS2 on Au(111). Phys. Rev. B 92, 245442 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Riley, J. et al. Negative electronic compressibility and tunable spin splitting in WSe2. Nat. Nanotechnol. 10, 1043–1047 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Yuan, H. et al. Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 9, 563–569 (2013).

    Article  Google Scholar 

  27. 27.

    Shanavas, K. V. & Satpathy, S. Effective tight-binding model for MX2 under electric and magnetic fields. Phys. Rev. B 91, 235145 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Kang, M. et al. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Zhu, B., Chen, X. & Cui, X. Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015).

    ADS  Article  Google Scholar 

  30. 30.

    Efimkin, D. K. & MacDonald, A. H. Many-body theory of trion absorption features in two-dimensional semiconductors. Phys. Rev. B 95, 035417 (2017).

    ADS  Article  Google Scholar 

Download references


We thank A. H. MacDonald for discussions. S.U. acknowledges financial support from the Danish Council for Independent Research, Natural Sciences, under the Sapere Aude programme (grant no. DFF-4090-00125) and from VILLUM FONDEN (grant no. 15375). R.J.K. is supported by a fellowship within the postdoctoral programme of the German Academic Exchange Service (DAAD). S.M. acknowledges support by the Swiss National Science Foundation (grant no. P2ELP2-155357). The work at Ohio State was primarily supported by NSF-MRSEC (grant DMR-1420451). Work at the US Naval Research Laboratory (NRL) was supported by core programmes and the NRL Nanoscience Institute, and by the Air Force Office of Scientific Research under contract number AOARD 14IOA018- 134141. This research used resources of the Advanced Light Source, which is a US Department of Energy Office of Science User Facility under contract no. DE-AC02-05CH11231.

Author information




J.K. and S.U. conceived and planned the experiments. K.M.M. and B.T.J. synthesized the single-layer WS2 flakes on SiO2. J.K., S.S., J.X. and R.K.K. assembled the WS2/h-BN heterostructures on TiO2. S.U., R.J.K., S.M., J.K., A.B., E.R. and C.J. performed the microARPES experiments. The microARPES set-up was developed and maintained by C.J., A.B. and E.R. S.U. analysed the experimental data with inputs from C.J. and E.R. All authors contributed to the interpretation and writing of the manuscript.

Corresponding author

Correspondence to Chris Jozwiak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katoch, J., Ulstrup, S., Koch, R.J. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nature Phys 14, 355–359 (2018).

Download citation

Further reading