Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superconductivity in few-layer stanene

Abstract

A single atomic slice of α-tin—stanene—has been predicted to host the quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. Although recent research has focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk α-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In situ angle-resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. The theory also indicates the existence of a topologically non-trivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Superconductive properties of few-layer stanene.
Fig. 2: Single-band to two-band transition of a trilayer stanene.
Fig. 3: ARPES studies of a trilayer stanene.
Fig. 4: Calculated band structure of a trilayer stanene on PbTe.

References

  1. Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2017).

    Article  ADS  Google Scholar 

  2. Brun, C., Cren, T. & Roditchev, D. Review of 2D superconductivity: the ultimate case of epitaxial monolayers. Supercond. Sci. Technol. 30, 013003 (2017).

    Article  ADS  Google Scholar 

  3. Xing, Y. et al. Quantum Griffiths singularity of superconductor–metal transition in Ga thin films. Science 350, 542–545 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion gated two-dimensional superconductor. Science 350, 409–413 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Tsen, A. W. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor. Nat. Phys. 12, 208–212 (2016).

    Article  Google Scholar 

  6. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  Google Scholar 

  8. Qin, S., Kim, J., Niu, Q. & Shih, C.-K. Superconductivity at the two-dimensional limit. Science 324, 1314–1317 (2009).

    Article  ADS  Google Scholar 

  9. Zhang, T. et al. Superconductivity in one-atomic-layer metal films grown on Si(111). Nat. Phys. 6, 104–108 (2010).

    Article  Google Scholar 

  10. Meissner, W. & Ochsenfeld, R. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften 21, 787–788 (1933).

    Article  ADS  Google Scholar 

  11. Chang, K. J. & Cohen, M. L. Electron–phonon interactions and superconductivity in Si, Ge, and Sn. Phys. Rev. B 34, 4552–4557 (1986).

    Article  ADS  Google Scholar 

  12. Wang, L. L. et al. Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)-\(2\sqrt{3}\times 2\sqrt{3}\) R30° V. Phys. Rev. B 77, 205410 (2008).

    Article  ADS  Google Scholar 

  13. Molle, A. et al. Buckled two-dimensional Xene sheets. Nat. Mater. 16, 163–169 (2017).

    Article  ADS  Google Scholar 

  14. Xu, Y., Gan, Z. & Zhang, S.-C. Enhanced thermoelectric performance and anomalous Seebeck effects in topological insulators. Phys. Rev. Lett. 112, 226801 (2014).

    Article  ADS  Google Scholar 

  15. Wang, J., Xu, Y. & Zhang, S.-C. Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator. Phys. Rev. B 90, 054503 (2014).

    Article  ADS  Google Scholar 

  16. Xu, Y. et al. Large-gap quantum spin Hall insulators in tin films. Phys. Rev. Lett. 111, 136804 (2013).

    Article  ADS  Google Scholar 

  17. Wu, S.-C., Shan, G. & Yan, B. Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials. Phys. Rev. Lett. 113, 256401 (2014).

    Article  ADS  Google Scholar 

  18. Zhu, F.-F. et al. Epitaxial growth of two-dimensional stanene. Nat. Mater. 14, 1020–1025 (2015).

    Article  ADS  Google Scholar 

  19. Y. Zang, et al. Realizing an epitaxial stanene with an insulating bandgap. Preprint at http://arXiv.org/abs/1711.07035.

  20. Chou, B.-H. et al. Hydrogenated ultra-thin tin films predicted as two-dimensional topological insulators. New J. Phys. 16, 115008 (2014).

    Article  ADS  Google Scholar 

  21. Chang, W. et al. Hard gap in epitaxial semiconductor–superconductor nanowires. Nat. Nanotechnol. 10, 232–236 (2015).

    Article  ADS  Google Scholar 

  22. Van de Walle, C. G. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000).

    Article  ADS  Google Scholar 

  23. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  ADS  Google Scholar 

  24. Yan, C. et al. Experimental observation of Dirac-like surface states and topological phase transition in Pb1 − x Sn x Te(111) films. Phys. Rev. Lett. 112, 186801 (2014).

    Article  ADS  Google Scholar 

  25. Talantsev, E. F. et al. On the origin of critical temperature enhancement in atomically thin superconductors. 2D Mater. 4, 025072 (2017).

    Article  Google Scholar 

  26. Gurevich, A. Limits of the upper critical field in dirty two-gap superconductors. Physica C 456, 160–169 (2007).

    Article  ADS  Google Scholar 

  27. Weng, Z. F. et al. Two-gap superconductivity in LaNiGa2 with nonunitary triplet pairing and even parity gap symmetry. Phys. Rev. Lett. 117, 027001 (2016).

    Article  ADS  Google Scholar 

  28. Zehetmayer, M. A review of two-band superconductivity: materials and effects on the thermodynamic and reversible mixed-state properties. Supercond. Sci. Technol. 26, 043001 (2013).

    Article  ADS  Google Scholar 

  29. Civale, L. & Serquis, A. MgB2 Superconducting Wires Ch. 1 (World Scientific, Singapore, 2016).

    Google Scholar 

  30. Barfuss, A. et al. Elemental topological insulator with tunable Fermi level: strained α-Sn on InSb(001). Phys. Rev. Lett. 111, 157205 (2013).

    Article  ADS  Google Scholar 

  31. Rojas-Sanchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Article  ADS  Google Scholar 

  32. Meevasana, W. et al. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10, 114–118 (2011).

    Article  ADS  Google Scholar 

  33. Boschker, H., Richter, C., Fillis-Tsirakis, E., Schneider, C. W. & Mannhart, J. Electron–phonon coupling and the superconducting phase diagram of the LaAlO3–SrTiO3 interface. Sci. Rep. 5, 12309 (2015).

    Article  ADS  Google Scholar 

  34. Matetskiy, A. V. et al. Two-dimensional superconductor with a giant Rashba effect: one-atom-layer Tl–Pb compound on Si(111). Phys. Rev. Lett. 115, 147003 (2015).

    Article  ADS  Google Scholar 

  35. Xu, Y., Tang, P. & Zhang, S.-C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate. Phys. Rev. B 92, 081112(R) (2015).

    Article  ADS  Google Scholar 

  36. Dimmock, J. O., Melngailis, I. & Strauss, A. J. Band structure and laser action in Pb x Sn1 − x Te. Phys. Rev. Lett. 16, 1193–1196 (1966).

    Article  ADS  Google Scholar 

  37. Arachchige, I. U. & Kanatzidis, M. G. Anomalous band gap evolution from band inversion in Pb1 − x Sn x Te nanocrystals. Nano Lett. 9, 1583–1587 (2009).

    Article  ADS  Google Scholar 

  38. Ephron, D., Yazdani, A., Kapitulnik, A. & Beasley, M. R. Observation of quantum dissipation in the vortex state of a highly disordered superconducting thin film. Phys. Rev. Lett. 76, 1529–1532 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Hong Yao and Canli Song for useful discussions. This work is financially supported by the Ministry of Science and Technology of China (2017YFA0304600, 2017YFA0302902), the National Natural Science Foundation of China (grant no. 11604176) and the Beijing Advanced Innovation Center for Future Chip (ICFC). Y.X. acknowledges support from Tsinghua University Initiative Scientific Research Program and the National Thousand-Young-Talents Program. S.-C.Z. is supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under contract no. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and Y.Z. contributed equally to this work. D.Z., K.H. and Q.-K.X. conceived the project. Y.Z. grew the samples and carried out ARPES measurements with the assistance of Y.G., M.L. and D.Z. carried out the transport measurements with the assistance of K.Z., M.L., D.Z., H.L., X.-P.H. and Y.-Y.W. made the two-coil mutual inductance measurements. Z.G. and Y.X. carried out first-principles calculations. D.Z. and Y.X. analysed the data and wrote the paper with input from K.H., X.-C.M., S.-C.Z. and Q.-K.X. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ding Zhang, Yong Xu or Qi-Kun Xue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Extended data

Extended data Figs. 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Zang, Y., Guan, Z. et al. Superconductivity in few-layer stanene. Nature Phys 14, 344–348 (2018). https://doi.org/10.1038/s41567-017-0031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0031-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing