Article | Published:

A quantum dipolar spin liquid

Nature Physicsvolume 14pages405410 (2018) | Download Citation

Abstract

Quantum spin liquids are a class of magnetic ground states reliant on non-local entanglement. Motivated by recent advances in the control of ultracold polar molecules and the development of dipolar quantum materials, we show that dipolar interactions between S = 1/2 moments stabilize spin liquids on the triangular and kagome lattices. In the latter case, the moments spontaneously break time-reversal, forming a chiral spin liquid with robust edge modes and emergent semions. We propose a simple route toward synthesizing a dipolar Heisenberg antiferromagnet from lattice-trapped polar molecules using only a single pair of rotational states and a constant electric field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 21 March 2018

    In the version of this Article originally published, the title for reference 11 was incorrect, and should have read ‘Influence of the range of interactions in thin magnetic structures’. This has been corrected in all versions of the Article.

References

  1. 1.

    Anderson, P. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153 (1973).

  2. 2.

    Kalmeyer, V. & Laughlin, RB. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095 (1987).

  3. 3.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

  4. 4.

    Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

  5. 5.

    Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

  6. 6.

    Rigol, M. & Singh, R. R. P. Magnetic susceptibility of the kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 207204 (2007).

  7. 7.

    Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

  8. 8.

    Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554 (1997).

  9. 9.

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

  10. 10.

    Thomale, R., Kapit, E., Schroeter, D. F. & Greiter, M. Parent Hamiltonian for the chiral spin liquid. Phys. Rev. B 80, 104406 (2009).

  11. 11.

    Taroni, A. & Hjörvarsson, B. Influence of the range of interactions in thin magnetic structures. Eur. Phys. J. B 77, 367 (2010).

  12. 12.

    Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 336, 1416–1419 (2012).

  13. 13.

    Greiter, M., Schroeter, D. F. & Thomale, R. Parent Hamiltonian for the non-Abelian chiral spin liquid. Phys. Rev. B 89, 165125 (2014).

  14. 14.

    Shen, S.-P. et al. Quantum electric-dipole liquid on a triangular lattice. Nat. Commun. 7, 10569 (2016).

  15. 15.

    Hassan, N. et al. Observation of a quantum dipole liquid state in an organic quasi-two-dimensional material. Preprint at: https://arxiv.org/abs/1704.04482 (2017).

  16. 16.

    Shimozawa, M. et al. Quantum-disordered state of magnetic and electric dipoles in an organic Mott system. Nat. Commun. 8, 1821 (2017).

  17. 17.

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

  18. 18.

    Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

  19. 19.

    Deiglmayr, J. et al. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133004 (2008).

  20. 20.

    Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

  21. 21.

    Yan, B. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

  22. 22.

    Hazzard, K. R. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

  23. 23.

    Baranov, M., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

  24. 24.

    Lewenstein, M. Atomic and molecular physics: Polar molecules in topological order. Nat. Phys. 2, 309–310 (2006).

  25. 25.

    Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

  26. 26.

    Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

  27. 27.

    Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

  28. 28.

    Yao, N. Y. et al. Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

  29. 29.

    Manmana, S. R. et al. Topological phases in ultracold polar-molecule quantum magnets. Phys. Rev. B 87, 08110(R)6 (2013).

  30. 30.

    White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

  31. 31.

    McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at: https://arxiv.org/abs/0804.2509 (2008).

  32. 32.

    Isakov, S. V., Moessner, R. & Sondhi, S. Why spin ice obeys the ice rules. Phys. Rev. Lett. 95, 217201 (2005).

  33. 33.

    Jo, G.-B. et al. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012).

  34. 34.

    Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

  35. 35.

    Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

  36. 36.

    Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

  37. 37.

    Depenbrock, S., McCulloch, I. P. & Schollwöck, U. Nature of the spin-liquid ground state of the S=1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett 109, 067201 (2012).

  38. 38.

    Jiang, H.-C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902–905 (2012).

  39. 39.

    Gong, S.-S., Zhu, W., Balents, L. & Sheng, D. N. Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice. Phys. Rev. B 91, 075112 (2015).

  40. 40.

    He, Y. C., Sheng, D. & Chen, Y. Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. Phys. Rev. Lett. 112, 137202 (2014).

  41. 41.

    Gong, S.-S., Zhu, W. & Sheng, D.N. Emergent chiral spin liquid: fractional quantum Hall effect in a kagome Heisenberg model. Sci. Rep. 4, 6317 (2014).

  42. 42.

    He, Y.-C. & Chen, Y. Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets. Phys. Rev. Lett. 114, 037201 (2015).

  43. 43.

    Zhu, Z. & White, S. R. Spin liquid phase of the SJ 1J 2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 04110(R)5 (2015).

  44. 44.

    Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. Competing spin-liquid states in the spin-½ Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403(R) (2015).

  45. 45.

    Oshikawa, M. Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett 84, 1535 (2000).

  46. 46.

    Hastings, M. B. Sufficient conditions for topological order in insulators. Europhys. Lett. 70, 824 (2005).

  47. 47.

    Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

  48. 48.

    Zaletel, M., Lu, Y.-M. & Vishwanath, A. Measuring space-group symmetry fractionalization in Z2 spin liquids. Phys. Rev. B 96, 195164 (2017).

  49. 49.

    Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413 (1989).

  50. 50.

    Singh, R. R. & Huse, D. A. Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet. Phys. Rev. B 76, 180407(R) (2007).

  51. 51.

    Nakano, H. & Sakai, T. Numerical-diagonalization study of spin gap issue of the kagome lattice Heisenberg antiferromagnet. J. Phys. Soc. Jpn 80, 053704 (2011).

  52. 52.

    Läuchli, A. M., Sudan, J. & Sørensen, E. S. Ground-state energy and spin gap of spin-1/2 Kagomé-Heisenberg antiferromagnetic clusters: large-scale exact diagonalization results. Phys. Rev. B 83, 212401 (2011).

  53. 53.

    Messio, L., Bernu, B. & Lhuillier, C. Kagome antiferromagnet: A chiral topological spin liquid? Phys. Rev.Lett. 108, 207204 (2012).

  54. 54.

    Iqbal, Y., Becca, F., Sorella, S. & Poilblanc, D. Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet. Phys. Rev. B 87, 060405(R) (2013).

  55. 55.

    Bauer, B. et al. Nonlinear spin-wave excitations at low magnetic bias fields. Nat. Commun. 5, 8274 (2014).

  56. 56.

    He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).

  57. 57.

    Liao, H. et al. Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

  58. 58.

    Sakai, T. & Nakano, H. Gapless quantum spin liquid of the kagome-lattice antiferromagnet. Polyhedron 126, 42–44 (2017).

  59. 59.

    Li, H. & Haldane, F. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008).

  60. 60.

    Qi, X.-L., Katsura, H. & Ludwig, A. W. W. General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett. 108, 196402 (2012).

  61. 61.

    Wess, J. & Zumino, B. Consequences of anomalous ward identities. Phys. Lett. B 37, 95 (1971).

  62. 62.

    Jolicoeur, T., Dagotto, E., Gagliano, E. & Bacci, S. Ground-state properties of the S=1/2 Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B 42, 4800(R) (1990).

  63. 63.

    Saadatmand, S. N. & McCulloch, I. P. Symmetry fractionalization in the topological phase of the spin-½J 1J 2 triangular Heisenberg model. Phys. Rev. B 94, 1211 11(R) (2016).

  64. 64.

    Barkeshli, M., Yao, N. Y. & Laumann, C. R. Continuous preparation of a fractional Chern insulator. Phys. Rev. Lett. 115, 026802 (2015).

  65. 65.

    Zaletel, M. P., Stamper-Kurn, D. M. & Yao, N. Y. Preparation of low entropy correlated many-body states via conformal cooling quenches. Preprint at: https://arxiv.org/abs/1611.04591 (2016).

  66. 66.

    Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

  67. 67.

    Ernst, P. T. et al. Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nat. Phys. 6, 56–61 (2010).

  68. 68.

    Morampudi, S. C., Turner, A. M., Pollmann, F. & Wilczek, F. Statistics of fractionalized excitations through threshold spectroscopy. Phys. Rev. Lett. 118, 227201 (2017).

  69. 69.

    Yao, N. Y., Glazman, L. I., Demler, E. A., Lukin, M. D. & Sau, J. D. Enhanced antiferromagnetic exchange between magnetic impurities in a superconducting host. Phys. Rev. Lett. 113, 087202 (2014).

  70. 70.

    Kezilebieke, S., Dvorak, M., Ojanen, T. & Liljeroth, P. Coupled Yu–Shiba–Rusinov states in moleculardimers on NbSe. Preprint at: https://arxiv.org/abs/1701.03288 (2017).

  71. 71.

    Greiter, M. & Thomale, R. Non-Abelian statistics in a quantum antiferromagnet. Phys. Rev. Lett 102, 207203 (2009).

  72. 72.

    Zaletel, M. P., Zhu, Z., Lu, Y.-M., Vishwanath, A. & White, S. R. Space group symmetry fractionalization in a chiral kagome Heisenberg antiferromagnet. Phys. Rev. Lett 116, 197203 (2016).

Download references

Acknowledgements

We gratefully acknowledge the insights of and discussions with B. Lev, A. Gorshkov, A. M. Rey, M. Lukin, C. Laumann, J. Moore, R. Thomale, J. Ye and M. Zwierlein. This work was supported by the AFOSR MURI grant FA9550-14-1-0035, the NSF (grant no. PHY-1654740), the Miller Institute for Basic Research in Science, the LDRD Program of LBNL under US DOE Contract No. DE-AC02-05CH11231, and the Simons Investigators programme.

Author information

Affiliations

  1. Physics Department, University of California Berkeley, Berkeley, CA, USA

    • N. Y. Yao
    • , D. M. Stamper-Kurn
    •  & A. Vishwanath
  2. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

    • N. Y. Yao
  3. Station Q, Microsoft Research, Santa Barbara, CA, USA

    • M. P. Zaletel
  4. Physics Department, Princeton University, Princeton, NJ, USA

    • M. P. Zaletel
  5. Physics Department, Harvard University, Cambridge, MA, USA

    • A. Vishwanath

Authors

  1. Search for N. Y. Yao in:

  2. Search for M. P. Zaletel in:

  3. Search for D. M. Stamper-Kurn in:

  4. Search for A. Vishwanath in:

Contributions

All authors contributed extensively to all aspects of this work.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to N. Y. Yao.

Supplementary information

  1. Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1038/s41567-017-0030-7