Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantum dipolar spin liquid

A Publisher Correction to this article was published on 21 March 2018

This article has been updated

Abstract

Quantum spin liquids are a class of magnetic ground states reliant on non-local entanglement. Motivated by recent advances in the control of ultracold polar molecules and the development of dipolar quantum materials, we show that dipolar interactions between Sā€‰=ā€‰1/2 moments stabilize spin liquids on the triangular and kagome lattices. In the latter case, the moments spontaneously break time-reversal, forming a chiral spin liquid with robust edge modes and emergent semions. We propose a simple route toward synthesizing a dipolar Heisenberg antiferromagnet from lattice-trapped polar molecules using only a single pair of rotational states and a constant electric field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase diagram of the dipolar Heisenberg model.
Fig. 2: XXZ anisotropy as a function of electric field.
Fig. 3: Numerical signatures of spin liquid behaviour and phase transitions.
Fig. 4: Entanglement spectra.

Similar content being viewed by others

Change history

  • 21 March 2018

    In the version of this Article originally published, the title for reference 11 was incorrect, and should have read ā€˜Influence of the range of interactions in thin magnetic structuresā€™. This has been corrected in all versions of the Article.

References

  1. Anderson, P. Resonating valence bonds: A new kind of insulator? Mater. Res. Bull. 8, 153 (1973).

    ArticleĀ  Google ScholarĀ 

  2. Kalmeyer, V. & Laughlin, RB. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095 (1987).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  3. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  4. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  6. Rigol, M. & Singh, R. R. P. Magnetic susceptibility of the kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 207204 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Helton, J. S. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  8. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554 (1997).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  9. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42ā€“45 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. Thomale, R., Kapit, E., Schroeter, D. F. & Greiter, M. Parent Hamiltonian for the chiral spin liquid. Phys. Rev. B 80, 104406 (2009).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  11. Taroni, A. & Hjƶrvarsson, B. Influence of the range of interactions in thin magnetic structures. Eur. Phys. J. B 77, 367 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  12. Kraemer, C. et al. Dipolar antiferromagnetism and quantum criticality in LiErF4. Science 336, 1416ā€“1419 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  13. Greiter, M., Schroeter, D. F. & Thomale, R. Parent Hamiltonian for the non-Abelian chiral spin liquid. Phys. Rev. B 89, 165125 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. Shen, S.-P. et al. Quantum electric-dipole liquid on a triangular lattice. Nat. Commun. 7, 10569 (2016).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. Hassan, N. et al. Observation of a quantum dipole liquid state in an organic quasi-two-dimensional material. Preprint at: https://arxiv.org/abs/1704.04482 (2017).

  16. Shimozawa, M. et al. Quantum-disordered state of magnetic and electric dipoles in an organic Mott system. Nat. Commun. 8, 1821 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  17. Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231ā€“235 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  18. Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  19. Deiglmayr, J. et al. Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101, 133004 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  20. Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. Yan, B. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521ā€“525 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  22. Hazzard, K. R. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  23. Baranov, M., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012ā€“5061 (2012).

    ArticleĀ  Google ScholarĀ 

  24. Lewenstein, M. Atomic and molecular physics: Polar molecules in topological order. Nat. Phys. 2, 309ā€“310 (2006).

    ArticleĀ  Google ScholarĀ 

  25. Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341ā€“347 (2006).

    ArticleĀ  Google ScholarĀ 

  26. Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  27. Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  28. Yao, N. Y. et al. Realizing fractional Chern insulators in dipolar spin systems. Phys. Rev. Lett. 110, 185302 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  29. Manmana, S. R. et al. Topological phases in ultracold polar-molecule quantum magnets. Phys. Rev. B 87, 08110(R)6 (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  30. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863 (1992).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  31. McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at: https://arxiv.org/abs/0804.2509 (2008).

  32. Isakov, S. V., Moessner, R. & Sondhi, S. Why spin ice obeys the ice rules. Phys. Rev. Lett. 95, 217201 (2005).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  33. Jo, G.-B. et al. Ultracold atoms in a tunable optical kagome lattice. Phys. Rev. Lett. 108, 045305 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  34. Becker, C. et al. Ultracold quantum gases in triangular optical lattices. New J. Phys. 12, 065025 (2010).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  35. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996ā€“999 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  36. Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173ā€“1176 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  37. Depenbrock, S., McCulloch, I. P. & Schollwƶck, U. Nature of the spin-liquid ground state of the S=1/2 Heisenberg model on the kagome lattice. Phys. Rev. Lett 109, 067201 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  38. Jiang, H.-C., Wang, Z. & Balents, L. Identifying topological order by entanglement entropy. Nat. Phys. 8, 902ā€“905 (2012).

    ArticleĀ  Google ScholarĀ 

  39. Gong, S.-S., Zhu, W., Balents, L. & Sheng, D. N. Global phase diagram of competing ordered and quantum spin-liquid phases on the kagome lattice. Phys. Rev. B 91, 075112 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  40. He, Y. C., Sheng, D. & Chen, Y. Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model. Phys. Rev. Lett. 112, 137202 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  41. Gong, S.-S., Zhu, W. & Sheng, D.N. Emergent chiral spin liquid: fractional quantum Hall effect in a kagome Heisenberg model. Sci. Rep. 4, 6317 (2014).

    ArticleĀ  Google ScholarĀ 

  42. He, Y.-C. & Chen, Y. Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets. Phys. Rev. Lett. 114, 037201 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  43. Zhu, Z. & White, S. R. Spin liquid phase of the S=Ā½J 1āˆ’J 2 Heisenberg model on the triangular lattice. Phys. Rev. B 92, 04110(R)5 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  44. Hu, W.-J., Gong, S.-S., Zhu, W. & Sheng, D. Competing spin-liquid states in the spin-Ā½ Heisenberg model on the triangular lattice. Phys. Rev. B 92, 140403(R) (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  45. Oshikawa, M. Commensurability, excitation gap, and topology in quantum many-particle systems on a periodic lattice. Phys. Rev. Lett 84, 1535 (2000).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  46. Hastings, M. B. Sufficient conditions for topological order in insulators. Europhys. Lett. 70, 824 (2005).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  47. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  48. Zaletel, M., Lu, Y.-M. & Vishwanath, A. Measuring space-group symmetry fractionalization in Z2 spin liquids. Phys. Rev. B 96, 195164 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  49. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413 (1989).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  50. Singh, R. R. & Huse, D. A. Ground state of the spin-1/2 kagome-lattice Heisenberg antiferromagnet. Phys. Rev. B 76, 180407(R) (2007).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  51. Nakano, H. & Sakai, T. Numerical-diagonalization study of spin gap issue of the kagome lattice Heisenberg antiferromagnet. J. Phys. Soc. Jpn 80, 053704 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  52. LƤuchli, A. M., Sudan, J. & SĆørensen, E. S. Ground-state energy and spin gap of spin-1/2 KagomĆ©-Heisenberg antiferromagnetic clusters: large-scale exact diagonalization results. Phys. Rev. B 83, 212401 (2011).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  53. Messio, L., Bernu, B. & Lhuillier, C. Kagome antiferromagnet: A chiral topological spin liquid? Phys. Rev.Lett. 108, 207204 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  54. Iqbal, Y., Becca, F., Sorella, S. & Poilblanc, D. Gapless spin-liquid phase in the kagome spin-1/2 Heisenberg antiferromagnet. Phys. Rev. B 87, 060405(R) (2013).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  55. Bauer, B. et al. Nonlinear spin-wave excitations at low magnetic bias fields. Nat. Commun. 5, 8274 (2014).

    ArticleĀ  Google ScholarĀ 

  56. He, Y.-C., Zaletel, M. P., Oshikawa, M. & Pollmann, F. Signatures of Dirac cones in a DMRG study of the kagome Heisenberg model. Phys. Rev. X 7, 031020 (2017).

    Google ScholarĀ 

  57. Liao, H. et al. Gapless spin-liquid ground state in the S=1/2 kagome antiferromagnet. Phys. Rev. Lett. 118, 137202 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  58. Sakai, T. & Nakano, H. Gapless quantum spin liquid of the kagome-lattice antiferromagnet. Polyhedron 126, 42ā€“44 (2017).

    ArticleĀ  Google ScholarĀ 

  59. Li, H. & Haldane, F. Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states. Phys. Rev. Lett. 101, 010504 (2008).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  60. Qi, X.-L., Katsura, H. & Ludwig, A. W. W. General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett. 108, 196402 (2012).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  61. Wess, J. & Zumino, B. Consequences of anomalous ward identities. Phys. Lett. B 37, 95 (1971).

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  62. Jolicoeur, T., Dagotto, E., Gagliano, E. & Bacci, S. Ground-state properties of the S=1/2 Heisenberg antiferromagnet on a triangular lattice. Phys. Rev. B 42, 4800(R) (1990).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  63. Saadatmand, S. N. & McCulloch, I. P. Symmetry fractionalization in the topological phase of the spin-Ā½J 1āˆ’J 2 triangular Heisenberg model. Phys. Rev. B 94, 1211 11(R) (2016).

    ArticleĀ  Google ScholarĀ 

  64. Barkeshli, M., Yao, N. Y. & Laumann, C. R. Continuous preparation of a fractional Chern insulator. Phys. Rev. Lett. 115, 026802 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  65. Zaletel, M. P., Stamper-Kurn, D. M. & Yao, N. Y. Preparation of low entropy correlated many-body states via conformal cooling quenches. Preprint at: https://arxiv.org/abs/1611.04591 (2016).

  66. Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659ā€“662 (2015).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  67. Ernst, P. T. et al. Probing superfluids in optical lattices by momentum-resolved Bragg spectroscopy. Nat. Phys. 6, 56ā€“61 (2010).

    ArticleĀ  Google ScholarĀ 

  68. Morampudi, S. C., Turner, A. M., Pollmann, F. & Wilczek, F. Statistics of fractionalized excitations through threshold spectroscopy. Phys. Rev. Lett. 118, 227201 (2017).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  69. Yao, N. Y., Glazman, L. I., Demler, E. A., Lukin, M. D. & Sau, J. D. Enhanced antiferromagnetic exchange between magnetic impurities in a superconducting host. Phys. Rev. Lett. 113, 087202 (2014).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  70. Kezilebieke, S., Dvorak, M., Ojanen, T. & Liljeroth, P. Coupled Yuā€“Shibaā€“Rusinov states in moleculardimers on NbSe. Preprint at: https://arxiv.org/abs/1701.03288 (2017).

  71. Greiter, M. & Thomale, R. Non-Abelian statistics in a quantum antiferromagnet. Phys. Rev. Lett 102, 207203 (2009).

    ArticleĀ  ADSĀ  Google ScholarĀ 

  72. Zaletel, M. P., Zhu, Z., Lu, Y.-M., Vishwanath, A. & White, S. R. Space group symmetry fractionalization in a chiral kagome Heisenberg antiferromagnet. Phys. Rev. Lett 116, 197203 (2016).

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Acknowledgements

We gratefully acknowledge the insights of and discussions with B. Lev, A. Gorshkov, A. M. Rey, M. Lukin, C. Laumann, J. Moore, R. Thomale, J. Ye and M. Zwierlein. This work was supported by the AFOSR MURI grant FA9550-14-1-0035, the NSF (grant no. PHY-1654740), the Miller Institute for Basic Research in Science, the LDRD Program of LBNL under US DOE Contract No. DE-AC02-05CH11231, and the Simons Investigators programme.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to all aspects of this work.

Corresponding author

Correspondence to N. Y. Yao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisherā€™s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, N.Y., Zaletel, M.P., Stamper-Kurn, D.M. et al. A quantum dipolar spin liquid. Nature Phys 14, 405ā€“410 (2018). https://doi.org/10.1038/s41567-017-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0030-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter ā€” what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing