Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature

Published online:


A large enhancement in the spin–orbit coupling of graphene has been predicted when interfacing it with semiconducting transition metal dichalcogenides. Signatures of such an enhancement have been reported, but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and tungsten or molybdenum disulphide (WS2, MoS2). We observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, being largest when the spins point out of the graphene plane. This indicates that the strong spin–valley coupling in the transition metal dichalcogenide is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin–valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.

  • Subscribe to Nature Physics for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

  2. 2.

    Roche, S. & Valenzuela, S. O. Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys. D Appl. Phys. 47, 094011 (2014).

  3. 3.

    Roche, S. et al. Graphene spintronics: the European flagship perspective. 2D Mater. 2, 030202 (2015).

  4. 4.

    Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D Appl. Phys. 50, 363001 (2017).

  5. 5.

    Kalamakar, M. V., Groenveld, C., Dankert, A. & Dash, S. P. Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015).

  6. 6.

    Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano. Lett. 16, 3533–3539 (2016).

  7. 7.

    Marchenko, D. et al. Giant Rashba splitting in graphene due to hybridization with gold. Nat. Commun. 3, 1232 (2012).

  8. 8.

    Klimovskikh, I. I. et al. Nontrivial spin structure of graphene on Pt(111) at the Fermi level due to spin-dependent hybridization. Phys. Rev. B 90, 235431 (2014).

  9. 9.

    Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

  10. 10.

    Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

  11. 11.

    Gmitra, M., Kochan, D., Högl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016).

  12. 12.

    Wang, Z., Ki, D.-H., Chen, H., Berger, H., MacDonald, A. H. & Morpurgo, A. F. Strong interface-induced spin–orbit interaction in graphene on WS2. Nat. Commun. 6, 8339 (2015).

  13. 13.

    Wang, Z., Ki, D.-H., Hhoo, J. Y., Mauro, D., Berger, H., Levitov, L. S. & Morpurgo, A. F. Origin and magnitude of designer spin–orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).

  14. 14.

    Yang, B. et al. Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS2. 2D Mater. 3, 031012 (2016).

  15. 15.

    Yang, B. et al. Strong electron–hole symmetric Rashba spin–orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures. Phys. Rev. B 96, 041409 (2017).

  16. 16.

    Vaklinova, K., Hoyer, A., Burghard, M. & Kern, K. Current-induced spin polarization in topological insulator–graphene heterostructures. Nano. Lett. 16, 2595–2602 (2016).

  17. 17.

    Dushenko, S. et al. Gate-tunable spin–charge conversion and the role of spin–orbit interaction in graphene. Phys. Rev. Lett. 116, 166102 (2016).

  18. 18.

    Savero Torres, W., Sierra, J. F., Benítez, L. A., Bonell, F., Costache, M. V. & Valenzuela, S. O. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017).

  19. 19.

    Garcia, J. H., Cummings, A. W. & Roche, S. Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano. Lett. 17, 5078 (2017).

  20. 20.

    Offidani, M., Milletarì, M., Raimondi, R. & Ferreira, A. Optimal charge-to-spin conversion in graphene on transition metal dichalcogenides. Phys. Rev. Lett. 119, 196801 (2017).

  21. 21.

    Yan, W., Txoperena, O., Llopis, R., Dery, H., Hueso, L. E. & Casanova, F. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

  22. 22.

    Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

  23. 23.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

  24. 24.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

  25. 25.

    Yang, L., Sinitsyn, N. A., Chen, W., Yuan, J., Zhang, J., Lou, J. & Crooker, S. A. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

  26. 26.

    Ye, Y., et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotech. 11, 598–602 (2016).

  27. 27.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

  28. 28.

    Cummings, A., García, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

  29. 29.

    Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

  30. 30.

    Raes, B., Cummings, A., Bonell, F., Costache, M. V., Sierra, J. F., Roche, S. & Valenzuela, S. O. Spin precession in anisotropic media. Phys. Rev. B 95, 085403 (2017).

  31. 31.

    Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985).

  32. 32.

    Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345 (2001).

  33. 33.

    Valenzuela, S. O. Nonlocal spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B 23, 2413–2438 (2009).

  34. 34.

    Y. Luo, Y. et al. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano. Lett. 17, 3877 (2017).

  35. 35.

    Avsar, A. et al. Opto-spintronics in graphene via proximity coupling. ACS Nano (2017).

  36. 36.

    Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin–orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

  37. 37.

    Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Large proximity-induced spin lifetime anisotropy in transition metal dichalcogenide/graphene heterostructures. Preprint at (2017).

  38. 38.

    Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H. S. J. & Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

Download references


We thank D. Torres for help in designing Fig. 1 and A. Cummings, S. Roche, J. Fabian and M. Timmermans for insightful discussions. This research was partially supported by the European Research Council under Grant Agreement 306652 SPINBOUND, by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 696656, by the Spanish Ministry of Economy and Competitiveness, MINECO (under Contracts MAT2016-75952-R and Severo Ochoa SEV-2013-0295), and by the CERCA Programme and the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2014 SGR 56. J.F.S. acknowledges support from the MINECO Juan de la Cierva program and M.V.C. and F.B. from the MINECO Ramón y Cajal programme.

Author information

Author notes

  1. Juan F. Sierra and Williams Savero Torres contributed equally to this work.


  1. Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology (BIST), Bellaterra, Barcelona, Spain

    • L. Antonio Benítez
    • , Juan F. Sierra
    • , Williams Savero Torres
    • , Aloïs Arrighi
    • , Frédéric Bonell
    • , Marius V. Costache
    •  & Sergio O. Valenzuela
  2. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain

    • L. Antonio Benítez
    •  & Aloïs Arrighi
  3. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain

    • Sergio O. Valenzuela


  1. Search for L. Antonio Benítez in:

  2. Search for Juan F. Sierra in:

  3. Search for Williams Savero Torres in:

  4. Search for Aloïs Arrighi in:

  5. Search for Frédéric Bonell in:

  6. Search for Marius V. Costache in:

  7. Search for Sergio O. Valenzuela in:


L.A.B., J.F.S., W.S.T. and A.A. fabricated the devices and L.A.B., J.F.S. and W.S.T. made the measurements. F.B. helped with the device fabrication and M.V.C. with the device fabrication and measurements. L.A.B. and S.O.V. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript. S.O.V. supervised the work.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to L. Antonio Benítez or Sergio O. Valenzuela.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figure 1–7, Supplementary References