Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature


A large enhancement in the spin–orbit coupling of graphene has been predicted when interfacing it with semiconducting transition metal dichalcogenides. Signatures of such an enhancement have been reported, but the nature of the spin relaxation in these systems remains unknown. Here, we unambiguously demonstrate anisotropic spin dynamics in bilayer heterostructures comprising graphene and tungsten or molybdenum disulphide (WS2, MoS2). We observe that the spin lifetime varies over one order of magnitude depending on the spin orientation, being largest when the spins point out of the graphene plane. This indicates that the strong spin–valley coupling in the transition metal dichalcogenide is imprinted in the bilayer and felt by the propagating spins. These findings provide a rich platform to explore coupled spin–valley phenomena and offer novel spin manipulation strategies based on spin relaxation anisotropy in two-dimensional materials.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Proximity-induced SOC and measurement scheme.
Fig. 2: Spin relaxation anisotropy.
Fig. 3: Spin precession measurements under oblique magnetic fields.
Fig. 4: Spin lifetime anisotropy ratio, ζ


  1. 1.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Roche, S. & Valenzuela, S. O. Graphene spintronics: puzzling controversies and challenges for spin manipulation. J. Phys. D Appl. Phys. 47, 094011 (2014).

    ADS  Article  Google Scholar 

  3. 3.

    Roche, S. et al. Graphene spintronics: the European flagship perspective. 2D Mater. 2, 030202 (2015).

    Article  Google Scholar 

  4. 4.

    Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D Appl. Phys. 50, 363001 (2017).

    Article  Google Scholar 

  5. 5.

    Kalamakar, M. V., Groenveld, C., Dankert, A. & Dash, S. P. Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Drögeler, M. et al. Spin lifetimes exceeding 12 ns in graphene nonlocal spin valve devices. Nano. Lett. 16, 3533–3539 (2016).

    ADS  Article  Google Scholar 

  7. 7.

    Marchenko, D. et al. Giant Rashba splitting in graphene due to hybridization with gold. Nat. Commun. 3, 1232 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Klimovskikh, I. I. et al. Nontrivial spin structure of graphene on Pt(111) at the Fermi level due to spin-dependent hybridization. Phys. Rev. B 90, 235431 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin–orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Gmitra, M., Kochan, D., Högl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Wang, Z., Ki, D.-H., Chen, H., Berger, H., MacDonald, A. H. & Morpurgo, A. F. Strong interface-induced spin–orbit interaction in graphene on WS2. Nat. Commun. 6, 8339 (2015).

    Article  Google Scholar 

  13. 13.

    Wang, Z., Ki, D.-H., Hhoo, J. Y., Mauro, D., Berger, H., Levitov, L. S. & Morpurgo, A. F. Origin and magnitude of designer spin–orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).

    Google Scholar 

  14. 14.

    Yang, B. et al. Tunable spin–orbit coupling and symmetry-protected edge states in graphene/WS2. 2D Mater. 3, 031012 (2016).

    Article  Google Scholar 

  15. 15.

    Yang, B. et al. Strong electron–hole symmetric Rashba spin–orbit coupling in graphene/monolayer transition metal dichalcogenide heterostructures. Phys. Rev. B 96, 041409 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    Vaklinova, K., Hoyer, A., Burghard, M. & Kern, K. Current-induced spin polarization in topological insulator–graphene heterostructures. Nano. Lett. 16, 2595–2602 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Dushenko, S. et al. Gate-tunable spin–charge conversion and the role of spin–orbit interaction in graphene. Phys. Rev. Lett. 116, 166102 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Savero Torres, W., Sierra, J. F., Benítez, L. A., Bonell, F., Costache, M. V. & Valenzuela, S. O. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017).

    Article  Google Scholar 

  19. 19.

    Garcia, J. H., Cummings, A. W. & Roche, S. Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano. Lett. 17, 5078 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Offidani, M., Milletarì, M., Raimondi, R. & Ferreira, A. Optimal charge-to-spin conversion in graphene on transition metal dichalcogenides. Phys. Rev. Lett. 119, 196801 (2017).

  21. 21.

    Yan, W., Txoperena, O., Llopis, R., Dery, H., Hueso, L. E. & Casanova, F. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotech. 7, 699–712 (2012).

    ADS  Article  Google Scholar 

  24. 24.

    Xiao, D., Liu, G.-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Yang, L., Sinitsyn, N. A., Chen, W., Yuan, J., Zhang, J., Lou, J. & Crooker, S. A. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 11, 830–834 (2015).

    Article  Google Scholar 

  26. 26.

    Ye, Y., et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotech. 11, 598–602 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Cummings, A., García, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

  29. 29.

    Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Raes, B., Cummings, A., Bonell, F., Costache, M. V., Sierra, J. F., Roche, S. & Valenzuela, S. O. Spin precession in anisotropic media. Phys. Rev. B 95, 085403 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Johnson, M. & Silsbee, R. H. Interfacial charge–spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985).

    ADS  Article  Google Scholar 

  32. 32.

    Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345 (2001).

    ADS  Article  Google Scholar 

  33. 33.

    Valenzuela, S. O. Nonlocal spin detection, spin accumulation and the spin Hall effect. Int. J. Mod. Phys. B 23, 2413–2438 (2009).

    ADS  Article  Google Scholar 

  34. 34.

    Y. Luo, Y. et al. Opto-valleytronic spin injection in monolayer MoS2/few-layer graphene hybrid spin valves. Nano. Lett. 17, 3877 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Avsar, A. et al. Opto-spintronics in graphene via proximity coupling. ACS Nano (2017).

  36. 36.

    Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin–orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).

    ADS  Article  Google Scholar 

  37. 37.

    Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Large proximity-induced spin lifetime anisotropy in transition metal dichalcogenide/graphene heterostructures. Preprint at (2017).

  38. 38.

    Castellanos-Gomez, A., Buscema, M., Molenaar, R., Singh, V., Janssen, L., van der Zant, H. S. J. & Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references


We thank D. Torres for help in designing Fig. 1 and A. Cummings, S. Roche, J. Fabian and M. Timmermans for insightful discussions. This research was partially supported by the European Research Council under Grant Agreement 306652 SPINBOUND, by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement 696656, by the Spanish Ministry of Economy and Competitiveness, MINECO (under Contracts MAT2016-75952-R and Severo Ochoa SEV-2013-0295), and by the CERCA Programme and the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2014 SGR 56. J.F.S. acknowledges support from the MINECO Juan de la Cierva program and M.V.C. and F.B. from the MINECO Ramón y Cajal programme.

Author information




L.A.B., J.F.S., W.S.T. and A.A. fabricated the devices and L.A.B., J.F.S. and W.S.T. made the measurements. F.B. helped with the device fabrication and M.V.C. with the device fabrication and measurements. L.A.B. and S.O.V. analysed the data and wrote the manuscript. All authors discussed the results and commented on the manuscript. S.O.V. supervised the work.

Corresponding authors

Correspondence to L. Antonio Benítez or Sergio O. Valenzuela.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figure 1–7, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benítez, L.A., Sierra, J.F., Savero Torres, W. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nature Phys 14, 303–308 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing