Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point


Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1,2,3,4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6,7,8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9,10,11,12,13,14,15,16,17,18,19,20,21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose–Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Paradigms of dynamics crossing a ferromagnetic quantum critical point.
Fig. 2: Development of density waves and momentum space population across the quantum critical point.
Fig. 3: Growth of excitations during the inflation phase.
Fig. 4: Coherent quantum critical dynamics.


  1. 1.

    Sachdev, S. Quantum Phase Transitions 1st edn (Cambridge Univ. Press, Cambridge, 2011).

  2. 2.

    Morikawa, M. Cosmological inflation as a quantum phase transition. Progr. Theoret. Phys. 93, 685–709 (1995).

    ADS  Article  Google Scholar 

  3. 3.

    Kibble, T. W. B. Some implications of a cosmological phase transition. Phys. Rep. 67, 183–199 (1980).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Vojta, T. Quantum phase transitions. AIP Conf. Proc. 1550, 288–247 (2013).

    Google Scholar 

  5. 5.

    Guth, A. H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).

    ADS  Article  MATH  Google Scholar 

  6. 6.

    Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A 9, 1387–1398 (1976).

    ADS  Article  MATH  Google Scholar 

  7. 7.

    Zurek, H. W. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    ADS  Article  Google Scholar 

  8. 8.

    del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).

    Article  Google Scholar 

  9. 9.

    Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M. & Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Article  Google Scholar 

  12. 12.

    Dziarmaga, J. Dynamics of a quantum phase transition and relaxation to a steady state. Adv. Phys. 59, 1063–1189 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Baumann, K., Mottl, R., Brennecke, F. & Esslinger, T. Exploring symmetry breaking at the Dicke quantum phase transition. Phys. Rev. Lett. 107, 140402 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Barnett, R., Polkovnikov, A. & Vengalattore, M. Prethermalization in quenched spinor condensates. Phys. Rev. A 84, 023606 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Lamporesi, G., Donadello, S., Serafini, S., Dalfovo, F. & Ferrari, G. Spontaneous creation of Kibble–Zurek solitons in a Bose–Einstein condensate. Nat. Phys. 9, 656–660 (2013).

    Article  Google Scholar 

  16. 16.

    Nicklas, E. et al. Observation of scaling in the dynamics of a strongly quenched quantum gas. Phys. Rev. Lett. 115, 245301 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas. Science 347, 167–170 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Klinder, J., Keler, H., Wolke, M., Mathey, L. & Hemmerich, A. Dynamical phase transition in the open Dicke model. Proc. Natl Acad. Sci. USA 112, 3290–3295 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Meldgin, C. et al. Probing the Bose glass–superfluid transition using quantum quenches of disorder. Nat. Phys. 12, 646–649 (2016).

    Article  Google Scholar 

  20. 20.

    Anquez, M. et al. Quantum Kibble–Zurek mechanism in a spin-1 Bose–Einstein condensate. Phys. Rev. Lett. 116, 155301 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    Clark, L. W., Feng, L. & Chin, C. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science 354, 606–610 (2016).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Parker, C. V., Ha, L.-C. & Chin, C. Direct observation of effective ferromagnetic domains of cold atoms in a shaken optical lattice. Nat. Phys. 9, 769–774 (2013).

    Article  Google Scholar 

  23. 23.

    Ha, L.-C., Clark, L. W., Parker, C. V., Anderson, B. M. & Chin, C. Roton-maxon excitation spectrum of bose condensates in a shaken optical lattice. Phys. Rev. Lett. 114, 055301 (2015).

    ADS  Article  Google Scholar 

  24. 24.

    Shvarchuck, I. et al. Bose–Einstein condensation into nonequilibrium states studied by condensate focusing. Phys. Rev. Lett. 89, 270404 (2002).

    Article  Google Scholar 

  25. 25.

    Hung, C. L. et al. Extracting density–density correlations from in situ images of atomic quantum gases. Phys. Rev. A 59, 4595–4607 (1999).

    ADS  Article  Google Scholar 

  26. 26.

    Morsch, O. & Oberthaler, M. Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006).

    ADS  Article  Google Scholar 

  27. 27.

    Anglin, J. R. Second-quantized Landau–Zener theory for dynamical instabilities. Phys. Rev. A 67, 051601 (2003).

    ADS  Article  Google Scholar 

Download references


We thank E. Berg, Q. Zhou and B. M. Anderson for helpful discussions. L.W.C. was supported by a Grainger fellowship. A.G. is supported by a Kadanoff–Rice fellowship. This work was supported by the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-1420709, NSF grant PHY-1511696 and Army Research Office-Multidisciplinary Research Initiative grant W911NF-14-1-0003.

Author information




L.F. and L.W.C. designed the experiments. L.F. performed the experiments and analysed the data. L.F. and C.C. prepared the manuscript. All authors contributed discussions on experiments and the manuscript. C.C. supervised.

Corresponding author

Correspondence to Cheng Chin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, Supplementary Figures 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Clark, L.W., Gaj, A. et al. Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point. Nature Phys 14, 269–272 (2018).

Download citation

Further reading