Ligand-field helical luminescence in a 2D ferromagnetic insulator


Bulk chromium tri-iodide (CrI3) has long been known as a layered van der Waals ferromagnet1. However, its monolayer form was only recently isolated and confirmed to be a truly two-dimensional (2D) ferromagnet2, providing a new platform for investigating light–matter interactions and magneto-optical phenomena in the atomically thin limit. Here, we report spontaneous circularly polarized photoluminescence in monolayer CrI3 under linearly polarized excitation, with helicity determined by the monolayer magnetization direction. In contrast, the bilayer CrI3 photoluminescence exhibits vanishing circular polarization, supporting the recently uncovered anomalous antiferromagnetic interlayer coupling in CrI3 bilayers2. Distinct from the Wannier–Mott excitons that dominate the optical response in well-known 2D van der Waals semiconductors3, our absorption and layer-dependent photoluminescence measurements reveal the importance of ligand-field and charge-transfer transitions to the optoelectronic response of atomically thin CrI3. We attribute the photoluminescence to a parity-forbidden d–d transition characteristic of Cr3+ complexes, which displays broad linewidth due to strong vibronic coupling and thickness-independent peak energy due to its localized molecular orbital nature.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Spontaneous circularly polarized luminescence from monolayer CrI3.
Fig. 2: Photoluminescence from monolayer CrI3 in an applied magnetic field.
Fig. 3: Bilayer luminescence reveals an antiferromagnetic ground state.
Fig. 4: Reflection spectrum and thickness-dependent PL.


  1. 1.

    Dillon, J. F. & Olson, C. E. Magnetization, resonance, and optical properties of the ferromagnet CrI3. J. Appl. Phys. 36, 1259–1260 (1965).

    ADS  Article  Google Scholar 

  2. 2.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  Google Scholar 

  5. 5.

    Schaibley, J. R. et al. Valleytronics in 2D materials. Nat. Rev. Mater. 1, 16055 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Snoek, J. L. New Developments in Ferromagnetic Materials (Elsevier, New York, 1947).

  7. 7.

    Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Jpn 15, 1664–1668 (1960).

    ADS  Article  Google Scholar 

  8. 8.

    Wachter, P. The optical electrical and magnetic properties of the europium chalcogenides and the rare earth pnictides. CRC Crit. Rev. Solid State Sci. 3, 189–241 (1972).

    Article  Google Scholar 

  9. 9.

    Baltzer, P. K., Lehmann, H. W. & Robbins, M. Insulating ferromagnetic spinels. Phys. Rev. Lett. 15, 493–495 (1965).

    ADS  Article  Google Scholar 

  10. 10.

    Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 64, R29–R64 (1988).

    ADS  Article  Google Scholar 

  11. 11.

    Ohno, H., Munekata, H., Penney, T., von Molnár, S. & Chang, L. L. Magnetotransport properties of p-type (In,Mn)As diluted magnetic III-V semiconductors. Phys. Rev. Lett. 68, 2664–2667 (1992).

    ADS  Article  Google Scholar 

  12. 12.

    Ohno, H. et al. Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    ADS  Article  Google Scholar 

  13. 13.

    Dillon, J. F., Kamimura, H. & Remeika, J. P. Magneto-optical properties of ferromagnetic chromium trihalides. J. Phys. Chem. Solids 27, 1531–1549 (1966).

    ADS  Article  Google Scholar 

  14. 14.

    Burch, K. S., Awschalom, D. D. & Basov, D. N. Optical properties of III-Mn-V ferromagnetic semiconductors. J. Magn. Magn. Mater. 320, 3207–3228 (2008).

    ADS  Article  Google Scholar 

  15. 15.

    Miles, P. A., Westphal, W. B. & Von Hippel, A. Dielectric spectroscopy of ferromagnetic semiconductors. Rev. Mod. Phys. 29, 279–307 (1957).

    ADS  Article  Google Scholar 

  16. 16.

    Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in 2D van der Waals crystals. Nature 546, 265–269 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Lee, J.-U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Grant, P. M. & Street, G. B. Optical properties of the chromium trihalides in the region 1-11 eV. Bull. Am. Phys. Soc. II 13, (1968).

  20. 20.

    Pollini, I. & Spinolo, G. Intrinsic optical properties of CrCl3. Phys. Status Solidi 41, 691–701 (1970).

    Article  Google Scholar 

  21. 21.

    Bermudez, V. M. & McClure, D. S. Spectroscopic studies of the two-dimensional magnetic insulators chromium trichloride and chromium tribromide—I. J. Phys. Chem. Solids 40, 129–147 (1979).

    ADS  Article  Google Scholar 

  22. 22.

    Nosenzo, L., Samoggia, G. & Pollini, I. Effect of magnetic ordering on the optical properties of transition-metal halides: NiCl2, NiBr2, CrCl3, and CrBr3. Phys. Rev. B 29, 3607–3616 (1984).

    ADS  Article  Google Scholar 

  23. 23.

    Figgis, B. N. & Hitchman, M. A. Ligand Field Theory and its Applications (Wiley, New York, 2000).

  24. 24.

    Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

  25. 25.

    McIntyre, J. D. E. & Aspnes, D. E. Differential reflection spectroscopy of very thin surface films. Surf. Sci. 24, 417–434 (1971).

    ADS  Article  Google Scholar 

  26. 26.

    Henderson, B. & Imbusch, G. F. Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

  27. 27.

    Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

    ADS  Article  Google Scholar 

  28. 28.

    Shinagawa, K., Sato, H., Ross, H. J., McAven, L. F. & Butler, P. H. Charge-transfer transitions in chromium trihalides. J. Phys. Condens. Matter 8, 8457 (1996).

    ADS  Article  Google Scholar 

  29. 29.

    McAven, L. F., Ross, H. J., Shinagawa, K. & Butler, P. H. The Kerr magneto-optic effect in ferromagnetic CrBr3. J. Phys. B At. Mol. Opt. Phys. 32, 563 (1999).

    ADS  Article  Google Scholar 

  30. 30.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    Article  Google Scholar 

  31. 31.

    Malitson, I. H. Refraction and dispersion of synthetic sapphire. J. Opt. Soc. Am. 52, 1377–1379 (1962).

    ADS  Article  Google Scholar 

Download references


The authors thank D. Gamelin for insightful discussions on the optical response of CrI3, and A. Majumdar for testing the measurement system. Work at the University of Washington was mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0018171), and University of Washington Innovation Award. Work at MIT has been supported by the Center for Integrated Quantum Materials under NSF grant DMR-1231319 as well as the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4541 to P.J.-H. Device fabrication has been partly supported by the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number DESC0001088. The contribution of D.H.C. is supported by DE-SC0002197. Work at CMU is supported by DOE BES DE-SC0012509. W.Y. is supported by the Croucher Foundation (Croucher Innovation Award), the RGC of Hong Kong (HKU17305914P), and the HKU ORA. Work at ORNL (M.A.M.) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. X.X. and D.X. acknowledge the support of a Cottrell Scholar Award. S.G. and L.Y. are supported by NSF grant no. DMR-1455346 and EFRI-2DARE-1542815. X.X. acknowledges the support from the State of Washington funded Clean Energy Institute and from the Boeing Distinguished Professorship in Physics.

Author information




X.X., K.L.S. and P.J.-H. conceived the experiment. K.L.S. built the experimental set-up and carried out the measurements, assisted by D.Z. and B.H., supervised by X.X. Crystal growth, characterization and device fabrication at MIT were carried out by D.R.K. and E.N.-M., supervised by P.J.-H. Device fabrication at UW was carried out by K.L.S., D.Z. and B.H., with crystal grown and characterized by M.A.M. at ONRL. K.L.S. and X.X. analysed and interpreted the data with theoretical support from X.Z., D.X., W.Y., S.G. and L.Y. K.L.S., X.X., D.H.C. and P.J.-H. wrote the manuscript with input from all authors. All authors discussed the results.

Corresponding authors

Correspondence to Pablo Jarillo-Herrero or Xiaodong Xu.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary notes, Supplementary Figures 1–5, and Supplementary References 1–12

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seyler, K.L., Zhong, D., Klein, D.R. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nature Phys 14, 277–281 (2018).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing