Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Statistical projection effects in a hydrodynamic pilot-wave system


Millimetric liquid droplets can walk across the surface of a vibrating fluid bath, self-propelled through a resonant interaction with their own guiding or ‘pilot’ wave fields. These walking droplets, or ‘walkers’, exhibit several features previously thought to be peculiar to the microscopic, quantum realm. In particular, walkers confined to circular corrals manifest a wave-like statistical behaviour reminiscent of that of electrons in quantum corrals. Here we demonstrate that localized topological inhomogeneities in an elliptical corral may lead to resonant projection effects in the walker’s statistics similar to those reported in quantum corrals. Specifically, we show that a submerged circular well may drive the walker to excite specific eigenmodes in the bath that result in drastic changes in the particle’s statistical behaviour. The well tends to attract the walker, leading to a local peak in the walker’s position histogram. By placing the well at one of the foci, a mode with maxima near the foci is preferentially excited, leading to a projection effect in the walker’s position histogram towards the empty focus, an effect strongly reminiscent of the quantum mirage. Finally, we demonstrate that the mean pilot-wave field has the same form as the histogram describing the walker’s statistics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the experimental set-up.
Fig. 2: Droplet statistics in an elliptical corral.
Fig. 3: Mean pilot-wave field.
Fig. 4: Fundamental modes of the elliptical corral transiently excited by the walker.
Fig. 5: Resonant projection effects.

Similar content being viewed by others


  1. Couder, Y., Protière, S., Fort, E. & Boudaoud, A. Dynamical phenomena: walking and orbiting droplets. Nature 437, 208–208 (2005).

    Article  ADS  Google Scholar 

  2. Protière, S., Boudaoud, A. & Couder, Y. Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85–108 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Andersen, A. et al. Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92, 013006 (2015).

    Article  ADS  Google Scholar 

  4. Bush, J. W. M. Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269–292 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001 (2013).

    Article  ADS  Google Scholar 

  6. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  Google Scholar 

  7. Shirokoff, D. Bouncing droplets on a billiard table. Chaos 23, 013115 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  8. Gilet, T. Dynamics and statistics of wave-particle interactions in a confined geometry. Phys. Rev. E 90, 052917 (2014).

    Article  ADS  Google Scholar 

  9. Gilet, T. Quantumlike statistics of deterministic wave-particle interactions in a circular cavity. Phys. Rev. E 93, 042202 (2016).

    Article  ADS  Google Scholar 

  10. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  ADS  Google Scholar 

  11. Fiete, G. A. & Heller, E. J. Theory of quantum corrals and quantum mirages. Rev. Mod. Phys. 75, 933–948 (2002).

    Article  ADS  Google Scholar 

  12. Moon, C. R., Lutz, C. P. & Manoharan, H. C. Single-atom gating of quantum-state superpositions. Nat. Phys. 4, 454–458 (2008).

    Article  Google Scholar 

  13. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  Google Scholar 

  14. Harris, D. M. & Bush, J. W. M. Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vibration 334, 255–269 (2015).

    Article  ADS  Google Scholar 

  15. Harris, D. M., Liu, T. & Bush, J. W. M. A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56, 83 (2015).

    Article  Google Scholar 

  16. Couder, Y., Fort, E., Gautier, C.-H. & Boudaoud, A. From bouncing to floating: noncoalescence of drops on a fluid bath. Phys. Rev. Lett. 94, 177801 (2005).

    Article  ADS  Google Scholar 

  17. Douady, S. Experimental study of the Faraday instability. J. Fluid Mech. 221, 383–409 (1990).

    Article  ADS  Google Scholar 

  18. Faraday, M. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299–340 (1831).

    Article  Google Scholar 

  19. Miles, J. & Henderson, D. Parametrically forced surface waves. Annu. Rev. Fluid Mech. 22, 143–165 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. Information stored in Faraday waves: the origin of a path memory. J. Fluid Mech. 674, 433–463 (2011).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Moláček, J. & Bush, J. W. M. Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612–647 (2013).

    Article  ADS  MATH  Google Scholar 

  22. Gutierrez-Vega, J. C., Rodriguez-Dagnino, R. M., Meneses-Nava, M. A. & Chavez-Cerda, S. Mathieu functions, a visual approach. Am. J. Phys. 71, 233–242 (2003).

    Article  ADS  Google Scholar 

  23. Blanchette, F. Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28, 032104 (2016).

    Article  ADS  Google Scholar 

  24. Gluckman, B. J., Arnold, C. B. & Gollub, J. P. Statistical studies of chaotic wave patterns. Phys. Rev. E 51, 1128–1147 (1995).

    Article  ADS  Google Scholar 

  25. C. Cohen-Tannoudji, B. Diu & F. Laloë. Quantum Mechanics (Wiley, 1977).

  26. Kumar, K. Linear theory of Faraday instability in viscous liquids. Proc. R. Soc. Lond. A 452, 1113–1126 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Heller, E. J. Bound-state eigenfunctions of classically chaotic Hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 1515–1518 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  28. Bush, J. W. M. The new wave of pilot-wave theory. Phys. Today 68, 47–53 (2015).

    Article  Google Scholar 

Download references


This work was supported by the US National Science Foundation through grants CMMI-1333242, DMS-1614043 and CMMI-1727565. The authors thank D. Harris and G. Pucci for input.

Author information

Authors and Affiliations



P.J.S. and J.W.M.B. conceived and developed the project. P.J.S. and T.C.-P. performed the experiments and reduced the data. P.J.S. and J.W.M.B. wrote the paper.

Corresponding author

Correspondence to John W. M. Bush.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Movie

Instantaneous wave field generated by a walking droplet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sáenz, P.J., Cristea-Platon, T. & Bush, J.W.M. Statistical projection effects in a hydrodynamic pilot-wave system. Nature Phys 14, 315–319 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing