Superradiance of an ensemble of nuclei excited by a free electron laser

Abstract

In 1954 Dicke predicted the accelerated initial decay of multiple atomic excitations1, laying the foundation for the concept of superradiance. Further studies2,3,4 suggested that emission of the total energy was similarly accelerated, provided that the system reaches the inversion threshold. Superradiant emission of the total energy has been confirmed by numerous studies4,5,6,7,8,9,10,11,12, yet the acceleration of the initial decay has not been experimentally demonstrated. Here we use resonant diffraction of X-rays from the Mössbauer transition13 of 57Fe nuclei to investigate superradiant decay, photon by photon, along the entire chain of the de-excitation cascade of up to 68 simultaneous coherent nuclear excitations created by a pulse of an X-ray free-electron laser. We find agreement with Dicke’s theory1 for the accelerated initial decay as the number of excitations is increased. We also find that our results are in agreement with a simple statistical model, providing a necessary baseline for discussing further properties of superradiance, within and beyond the low-excitation regime.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The experimental set-up and the parameters of the X-ray beam.
Fig. 2: Measuring the multiphoton response.
Fig. 3: Initial decay rate.
Fig. 4: Emission of the total energy.

References

  1. 1.

    Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

  2. 2.

    Rehler, N. E. & Eberly, J. H. Superradiance. Phys. Rev. A 3, 1735–1751 (1971).

  3. 3.

    Gross, M. & Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

  4. 4.

    Cong, K. et al. Dicke superradiance in solids. J. Opt. Soc. Am. B 33, C80–C101 (2016).

  5. 5.

    Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

  6. 6.

    Florian, R., Schwan, L. O. & Schmid, D. Time-resolving experiments on Dicke superfluorescence of O2 -centers in KCl. Two-color superfluorescence. Phys. Rev. A. 29, 2709–2715 (1984).

  7. 7.

    Malcuit, M. S., Maki, J. J., SImkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

  8. 8.

    Zheleznyakov, V. V., Kocharovsky, V. V. & Kocharovsky, V. V. Polarization waves and superradiance in active media. Sov. Phys. Usp. 32, 835–870 (1989).

  9. 9.

    Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

  10. 10.

    Meiser, D., Ye, J., Carlson, D. R. & Holland, M. J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 102, 163601 (2009).

  11. 11.

    Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

  12. 12.

    Norcia, M. A., Winchester, M. N., Cline, J. R. K. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

  13. 13.

    Mössbauer, R. L. Kernresonanz-Fluoreszenz von GammaStrahlung in Ir191. Z. Physik 151, 124–143 (1958).

  14. 14.

    Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

  15. 15.

    Van Bürck, U. et al. Nuclear Bragg scattering of synchrotron radiation with strong speedup of coherent decay, measured on antiferromagnetic 57FeBO3. Phys. Rev. Lett. 59, 355–358 (1987).

  16. 16.

    Trammell, G. T. Gamma-ray diffraction by resonant nuclei. In Proc. Int. Atomic Energy Agency Symp. Chemical Effects Nuclear Transformations Vol. 1, 75–85 (IAEA, Vienna, 1961).

  17. 17.

    Afanas’ev, A. M. & Kagan, Y. Radiation of a system of excited nuclei in a crystal. JETP Lett. 2, 81–83 (1965).

  18. 18.

    Hastings, J. B., Siddons, D. P., van Bürck, U., Hollatz, R. & Bergmann, U. Mössbauer-spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991).

  19. 19.

    Shvyd’ko, Y. V., Smirnov, G. V., Popov, S. L. & Hertrich, T. Observation of the enhanced forward γ-emission in spontaneous nuclear decay. JETP Lett. 53, 69–73 (1991).

  20. 20.

    Kagan, Y., Afanas’ev, A. M. & Perstnev, I. P. Theory of resonance Bragg scattering of γ-quanta by regular crystals. Sov. Phys. JETP 27, 819–824 (1968).

  21. 21.

    Hannon, J. P. & Trammell, G. T. Mössbauer diffraction. II. Dynamical theory of Mössbauer optics. Phys. Rev. 186, 306–325 (1969).

  22. 22.

    Kagan, Y., Afanas’ev, A. M. & Kohn, V. G. On excitation of isomeric nuclear states in a crystal by synchrotron radiation. J. Phys. C 12, 615–631 (1979).

  23. 23.

    Smirnov, G. V., Chumakov, A. I., Potapkin, V. B., Rüffer, R. & Popov, S. L. Multispace quantum interference in a 57Fe synchrotron Mössbauer source. Phys. Rev. A 84, 053851 (2011).

  24. 24.

    Batterman, B. W. & Cole, H. Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964).

  25. 25.

    Smirnov, G. V., Sklyarevskii, V. V., Voskanyan, R. A. & Artem’ev, A. N. Nuclear diffraction of resonant γ-radiation by an antiferromagnetic crystal. JETP Lett. 9, 70–74 (1969).

  26. 26.

    Baron, A. Q. R. Detectors for nuclear resonant scattering experiments. Hyperfine Interact. 125, 29–42 (2000).

  27. 27.

    Trammell, G. T. & Hannon, J. P. Quantum beats from nuclei excited by synchrotron pulses. Phys. Rev. B 18, 165–172 (1978).

  28. 28.

    Lipkin, H. J. in Multiple Facets of Quantization and Supersymmetry: Michel Marinov Memortial (eds Olshanetsky, M. A. & Vanstein A.) 128–150 (World Scientific Publishing, 2002).

  29. 29.

    Tono, K. et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys. 15, 083035 (2013).

  30. 30.

    Smirnov, G. V., Mostovoi, V. V., Shvyd’ko, Y. V., Seleznev, V. N. & Rudenko, V. V. Suppression of a nuclear reaction in Fe57B03 crystal. Sov. Phys. JETP 51, 603–609 (1980).

Download references

Acknowledgements

The XFEL experiment was performed at the BL3 [EH2] of SACLA with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B8025). Single-photon excitations were studied at the Nuclear Resonance beamline ID18 of the ESRF. We thank the SACLA staff for extremely stable operation of the facility that enabled completion of this study within a single 72 hour time slot. A.I.C. thanks V. Kocharovsky for helpful discussion of an application of superradiance to lasers with ultra-narrow line widths. We are grateful for comments received during the reviewing process that helped us clarify the message of the paper for a broader audience.

Author information

The experiment was conceived by A.I.C. in discussion with T.I. and A.Q.R.B. and organized by A.I.C. Specific equipment was prepared by G.V.S., A.I.C., A.Q.R.B., C.S., O.L., Y.I., K.T., T.K. and M.Y. Experiments were done by A.I.C., A.Q.R.B., I.S., C.S., O.L., Y.S., R.R., Y.I., K.T., and M.Y. Data analysis was done by A.I.C., C.S., I.S. and A.Q.R.B., with I.S. proving equation (2). All authors discussed the results. The paper was written by A.Q.R.B. and A.I.C. with input from all authors.

Correspondence to Aleksandr I. Chumakov or Alfred Q. R. Baron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1-8, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading