Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Superradiance of an ensemble of nuclei excited by a free electron laser

Abstract

In 1954 Dicke predicted the accelerated initial decay of multiple atomic excitations1, laying the foundation for the concept of superradiance. Further studies2,3,4 suggested that emission of the total energy was similarly accelerated, provided that the system reaches the inversion threshold. Superradiant emission of the total energy has been confirmed by numerous studies4,5,6,7,8,9,10,11,12, yet the acceleration of the initial decay has not been experimentally demonstrated. Here we use resonant diffraction of X-rays from the Mössbauer transition13 of 57Fe nuclei to investigate superradiant decay, photon by photon, along the entire chain of the de-excitation cascade of up to 68 simultaneous coherent nuclear excitations created by a pulse of an X-ray free-electron laser. We find agreement with Dicke’s theory1 for the accelerated initial decay as the number of excitations is increased. We also find that our results are in agreement with a simple statistical model, providing a necessary baseline for discussing further properties of superradiance, within and beyond the low-excitation regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The experimental set-up and the parameters of the X-ray beam.
Fig. 2: Measuring the multiphoton response.
Fig. 3: Initial decay rate.
Fig. 4: Emission of the total energy.

Similar content being viewed by others

References

  1. Dicke, R. H. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  MATH  Google Scholar 

  2. Rehler, N. E. & Eberly, J. H. Superradiance. Phys. Rev. A 3, 1735–1751 (1971).

    Article  ADS  Google Scholar 

  3. Gross, M. & Haroche, S. Superradiance: An essay on the theory of collective spontaneous emission. Phys. Rep. 93, 301–396 (1982).

    Article  ADS  Google Scholar 

  4. Cong, K. et al. Dicke superradiance in solids. J. Opt. Soc. Am. B 33, C80–C101 (2016).

    Article  Google Scholar 

  5. Skribanowitz, N., Herman, I. P., MacGillivray, J. C. & Feld, M. S. Observation of Dicke superradiance in optically pumped HF gas. Phys. Rev. Lett. 30, 309–312 (1973).

    Article  ADS  Google Scholar 

  6. Florian, R., Schwan, L. O. & Schmid, D. Time-resolving experiments on Dicke superfluorescence of O2 -centers in KCl. Two-color superfluorescence. Phys. Rev. A. 29, 2709–2715 (1984).

    Article  ADS  Google Scholar 

  7. Malcuit, M. S., Maki, J. J., SImkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

    Article  ADS  Google Scholar 

  8. Zheleznyakov, V. V., Kocharovsky, V. V. & Kocharovsky, V. V. Polarization waves and superradiance in active media. Sov. Phys. Usp. 32, 835–870 (1989).

    Article  ADS  Google Scholar 

  9. Scully, M. O. & Svidzinsky, A. A. The super of superradiance. Science 325, 1510–1511 (2009).

    Article  Google Scholar 

  10. Meiser, D., Ye, J., Carlson, D. R. & Holland, M. J. Prospects for a millihertz-linewidth laser. Phys. Rev. Lett. 102, 163601 (2009).

    Article  ADS  Google Scholar 

  11. Bohnet, J. G. et al. A steady-state superradiant laser with less than one intracavity photon. Nature 484, 78–81 (2012).

    Article  ADS  Google Scholar 

  12. Norcia, M. A., Winchester, M. N., Cline, J. R. K. & Thompson, J. K. Superradiance on the millihertz linewidth strontium clock transition. Sci. Adv. 2, e1601231 (2016).

    Article  ADS  Google Scholar 

  13. Mössbauer, R. L. Kernresonanz-Fluoreszenz von GammaStrahlung in Ir191. Z. Physik 151, 124–143 (1958).

    Article  ADS  Google Scholar 

  14. Ishikawa, T. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nat. Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  15. Van Bürck, U. et al. Nuclear Bragg scattering of synchrotron radiation with strong speedup of coherent decay, measured on antiferromagnetic 57FeBO3. Phys. Rev. Lett. 59, 355–358 (1987).

    Article  ADS  Google Scholar 

  16. Trammell, G. T. Gamma-ray diffraction by resonant nuclei. In Proc. Int. Atomic Energy Agency Symp. Chemical Effects Nuclear Transformations Vol. 1, 75–85 (IAEA, Vienna, 1961).

  17. Afanas’ev, A. M. & Kagan, Y. Radiation of a system of excited nuclei in a crystal. JETP Lett. 2, 81–83 (1965).

    ADS  Google Scholar 

  18. Hastings, J. B., Siddons, D. P., van Bürck, U., Hollatz, R. & Bergmann, U. Mössbauer-spectroscopy using synchrotron radiation. Phys. Rev. Lett. 66, 770–773 (1991).

    Article  ADS  Google Scholar 

  19. Shvyd’ko, Y. V., Smirnov, G. V., Popov, S. L. & Hertrich, T. Observation of the enhanced forward γ-emission in spontaneous nuclear decay. JETP Lett. 53, 69–73 (1991).

    ADS  Google Scholar 

  20. Kagan, Y., Afanas’ev, A. M. & Perstnev, I. P. Theory of resonance Bragg scattering of γ-quanta by regular crystals. Sov. Phys. JETP 27, 819–824 (1968).

    ADS  Google Scholar 

  21. Hannon, J. P. & Trammell, G. T. Mössbauer diffraction. II. Dynamical theory of Mössbauer optics. Phys. Rev. 186, 306–325 (1969).

    Article  ADS  Google Scholar 

  22. Kagan, Y., Afanas’ev, A. M. & Kohn, V. G. On excitation of isomeric nuclear states in a crystal by synchrotron radiation. J. Phys. C 12, 615–631 (1979).

    Article  ADS  Google Scholar 

  23. Smirnov, G. V., Chumakov, A. I., Potapkin, V. B., Rüffer, R. & Popov, S. L. Multispace quantum interference in a 57Fe synchrotron Mössbauer source. Phys. Rev. A 84, 053851 (2011).

    Article  ADS  Google Scholar 

  24. Batterman, B. W. & Cole, H. Dynamical diffraction of x rays by perfect crystals. Rev. Mod. Phys. 36, 681–717 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  25. Smirnov, G. V., Sklyarevskii, V. V., Voskanyan, R. A. & Artem’ev, A. N. Nuclear diffraction of resonant γ-radiation by an antiferromagnetic crystal. JETP Lett. 9, 70–74 (1969).

    Google Scholar 

  26. Baron, A. Q. R. Detectors for nuclear resonant scattering experiments. Hyperfine Interact. 125, 29–42 (2000).

    Article  Google Scholar 

  27. Trammell, G. T. & Hannon, J. P. Quantum beats from nuclei excited by synchrotron pulses. Phys. Rev. B 18, 165–172 (1978).

    Article  ADS  Google Scholar 

  28. Lipkin, H. J. in Multiple Facets of Quantization and Supersymmetry: Michel Marinov Memortial (eds Olshanetsky, M. A. & Vanstein A.) 128–150 (World Scientific Publishing, 2002).

  29. Tono, K. et al. Beamline, experimental stations and photon beam diagnostics for the hard x-ray free electron laser of SACLA. New J. Phys. 15, 083035 (2013).

    Article  ADS  Google Scholar 

  30. Smirnov, G. V., Mostovoi, V. V., Shvyd’ko, Y. V., Seleznev, V. N. & Rudenko, V. V. Suppression of a nuclear reaction in Fe57B03 crystal. Sov. Phys. JETP 51, 603–609 (1980).

    ADS  Google Scholar 

Download references

Acknowledgements

The XFEL experiment was performed at the BL3 [EH2] of SACLA with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2014B8025). Single-photon excitations were studied at the Nuclear Resonance beamline ID18 of the ESRF. We thank the SACLA staff for extremely stable operation of the facility that enabled completion of this study within a single 72 hour time slot. A.I.C. thanks V. Kocharovsky for helpful discussion of an application of superradiance to lasers with ultra-narrow line widths. We are grateful for comments received during the reviewing process that helped us clarify the message of the paper for a broader audience.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was conceived by A.I.C. in discussion with T.I. and A.Q.R.B. and organized by A.I.C. Specific equipment was prepared by G.V.S., A.I.C., A.Q.R.B., C.S., O.L., Y.I., K.T., T.K. and M.Y. Experiments were done by A.I.C., A.Q.R.B., I.S., C.S., O.L., Y.S., R.R., Y.I., K.T., and M.Y. Data analysis was done by A.I.C., C.S., I.S. and A.Q.R.B., with I.S. proving equation (2). All authors discussed the results. The paper was written by A.Q.R.B. and A.I.C. with input from all authors.

Corresponding authors

Correspondence to Aleksandr I. Chumakov or Alfred Q. R. Baron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1-8, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, A.I., Baron, A.Q.R., Sergueev, I. et al. Superradiance of an ensemble of nuclei excited by a free electron laser. Nature Phys 14, 261–264 (2018). https://doi.org/10.1038/s41567-017-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-017-0001-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing