Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsic optical bistability of photon avalanching nanocrystals

Abstract

Optically bistable materials respond to a single input with two possible optical outputs, contingent on excitation history. Such materials would be ideal for optical switching and memory, but the limited understanding of intrinsic optical bistability (IOB) prevents the development of nanoscale IOB materials suitable for devices. Here we demonstrate IOB in Nd3+-doped KPb2Cl5 avalanching nanoparticles, which switch with high contrast between luminescent and non-luminescent states, with hysteresis characteristic of bistability. We elucidate a non-thermal mechanism in which IOB originates from suppressed non-radiative relaxation in Nd3+ ions and from the positive feedback of photon avalanching, resulting in extreme, >200th-order optical nonlinearities. The modulation of laser pulsing tunes the hysteresis widths, and dual-laser excitation enables transistor-like optical switching. This control over nanoscale IOB establishes avalanching nanoparticles for photonic devices in which light is used to manipulate light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IOB in KPb2Cl5:Nd3+ ANPs.
Fig. 2: Bistable luminescence of KPb2Cl5:Nd3+ ANPs.
Fig. 3: Model of IOB in KPb2Cl5:Nd3+ ANPs.
Fig. 4: Temporal modulation of luminescence hysteresis.
Fig. 5: Photoswitching of ANPs via instability crossing.

Similar content being viewed by others

Data availability

All data in this Article and its Supplementary Information are available from the corresponding authors upon reasonable request.

Code availability

All code used in this paper is available from the corresponding authors upon reasonable request.

References

  1. Gibbs, H. Optical Bistability: Controlling Light with Light (Elsevier, 2012).

  2. Gamelin, D. R., Lüthi, S. R. & Güdel, H. U. The role of laser heating in the intrinsic optical bistability of Yb3+-doped bromide lattices. J. Phys. Chem. B 104, 11045–11057 (2000).

    Article  MATH  Google Scholar 

  3. Nishida, K. et al. Optical bistability in nanosilicon with record low Q-factor. Nano Lett. 23, 11727–11733 (2023).

    Article  ADS  MATH  Google Scholar 

  4. Neuendorf, R., Quinten, M. & Kreibig, U. Optical bistability of small heterogeneous clusters. J. Chem. Phys. 104, 6348–6354 (1996).

    Article  ADS  MATH  Google Scholar 

  5. Goldstone, J. A. & Garmire, E. Intrinsic optical bistability in nonlinear media. Phys. Rev. Lett. 53, 910–913 (1984).

    Article  ADS  MATH  Google Scholar 

  6. Pietzsch, O., Kubetzka, A., Bode, M. & Wiesendanger, R. Observation of magnetic hysteresis at the nanometer scale by spin-polarized scanning tunneling spectroscopy. Science 292, 2053–2056 (2001).

    Article  ADS  Google Scholar 

  7. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

    Article  ADS  MATH  Google Scholar 

  8. Smith, S. D. Optical bistability, photonic logic, and optical computation. Appl. Opt. 25, 1550–1564 (1986).

    Article  MATH  Google Scholar 

  9. Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    Article  MATH  Google Scholar 

  10. McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).

    Article  MATH  Google Scholar 

  11. Gibbs, H. M. et al. Optical bistability in semiconductors. Appl. Phys. Lett. 35, 451–453 (1979).

    Article  ADS  MATH  Google Scholar 

  12. Wang, R., Hu, F., Meng, Y., Gong, M. & Liu, Q. High-contrast optical bistability using a subwavelength epsilon-near-zero material. Opt. Lett. 48, 1371–1374 (2023).

    Google Scholar 

  13. Lee, C. et al. Giant nonlinear optical responses from photon-avalanching nanoparticles. Nature 589, 230–235 (2021).

    Article  ADS  MATH  Google Scholar 

  14. Liang, Y. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nat. Nanotechnol. 17, 524–530 (2022).

    Article  ADS  MATH  Google Scholar 

  15. Noginov, M. A., Vondrova, M. & Casimir, D. Analysis of intrinsic optical bistability in Tm-doped laser-related crystals. Phys. Rev. B 68, 195119 (2003).

    Article  ADS  MATH  Google Scholar 

  16. Li, L., Zhang, X., Cui, J. & Chen, L. A theoretical study of intrinsic optical bistability dynamics in Tm3+/Yb3+ codoped systems with an upconversion avalanche mechanism. J. Opt. A Pure Appl. Opt. 11, 105203 (2009).

    Article  ADS  Google Scholar 

  17. Hehlen, M. P. et al. Cooperative bistability in dense, excited atomic systems. Phys. Rev. Lett. 73, 1103–1106 (1994).

    Article  ADS  MATH  Google Scholar 

  18. Hehlen, M. P., Kuditcher, A., Rand, S. C. & Lüthi, S. R. Site-selective, intrinsically bistable luminescence of Yb3+ ion pairs in CsCdBr3. Phys. Rev. Lett. 82, 3050–3053 (1999).

    Article  ADS  Google Scholar 

  19. Ródenas, A. et al. Bistable chromatic switching in Yb3+-doped NdPO4 crystals. Phys. Rev. B 74, 035106 (2006).

    Article  ADS  MATH  Google Scholar 

  20. Li, D., Cui, H., Qin, G. & Qin, W. Photoinduced photon avalanche turns white objects into bright blackbodies. Commun. Phys. 6, 120 (2023).

    Article  MATH  Google Scholar 

  21. Marciniak, L., Strek, W., Bednarkiewicz, A., Lukowiak, A. & Hreniak, D. Bright upconversion emission of Nd3+ in LiLa1–xNdxP4O12 nanocrystalline powders. Opt. Mater. 33, 1492–1494 (2011).

    Article  ADS  Google Scholar 

  22. Li, L. et al. Bistable upconversion emission in Yb-sensitized Tm:ZrO2 nanophosphors at room temperature. J. Nonlinear Opt. Phys. Mater. 25, 1650009 (2016).

    Article  ADS  MATH  Google Scholar 

  23. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Article  Google Scholar 

  24. Zhang, Z. et al. Tuning phonon energies in lanthanide‐doped potassium lead halide nanocrystals for enhanced nonlinearity and upconversion. Angew. Chem. Int. Ed. 62, e202212549 (2023).

    Article  Google Scholar 

  25. Partlow, W. D. & Moos, H. W. Multiphonon relaxation in LaCl3:Nd3+. Phys. Rev. 157, 252–256 (1967).

    Article  ADS  MATH  Google Scholar 

  26. Bednarkiewicz, A., Chan, E. M., Kotulska, A., Marciniak, L. & Prorok, K. Photon avalanche in lanthanide doped nanoparticles for biomedical applications: super-resolution imaging. Nanoscale Horiz. 4, 881–889 (2019).

    Article  ADS  Google Scholar 

  27. Vonk, S. J. W., Van Swieten, T. P., Cocina, A. & Rabouw, F. T. Photonic artifacts in ratiometric luminescence nanothermometry. Nano Lett. 23, 6560–6566 (2023).

    Article  ADS  Google Scholar 

  28. Minzioni, P. et al. Roadmap on all-optical processing. J. Opt. 21, 063001 (2019).

    Article  ADS  MATH  Google Scholar 

  29. Wang, F. et al. Ultralow-power all-optical logic data distributor based on resonant excitation enhanced nonlinearity by upconversion radiative transfer. Adv. Opt. Mater. 5, 1700360 (2017).

    Article  Google Scholar 

  30. Lee, C. et al. Indefinite and bidirectional near-infrared nanocrystal photoswitching. Nature 618, 951–958 (2023).

    Article  ADS  MATH  Google Scholar 

  31. Wu, S. et al. Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proc. Natl Acad. Sci. USA 106, 10917–10921 (2009).

    Article  ADS  MATH  Google Scholar 

  32. Dudek, M. et al. Size‐dependent photon avalanching in Tm3+ doped LiYF4 nano, micro, and bulk crystals. Adv. Opt. Mater. 10, 2201052 (2022).

  33. Chan, E. M., Gargas, D. J., Schuck, P. J. & Milliron, D. J. Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals. J. Phys. Chem. B 116, 10561–10570 (2012).

    Article  Google Scholar 

  34. Teitelboim, A. et al. Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics. J. Phys. Chem. C 123, 2678–2689 (2019).

    Article  MATH  Google Scholar 

  35. Bluiett, A. G. et al. Thulium-sensitized neodymium in KPb2Cl5 for mid-infrared laser development. J. Opt. Soc. Am. B 22, 2250–2256 (2005).

    Article  MATH  Google Scholar 

  36. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  MATH  Google Scholar 

  37. Peng, H.-T., Nahmias, M. A., De Lima, T. F., Tait, A. N. & Shastri, B. J. Neuromorphic photonic integrated circuits. IEEE J. Sel. Topics Quantum Electron. 24, 6101715 (2018).

    Article  Google Scholar 

  38. Bednarkiewicz, A. et al. All-optical data processing with photon avalanching nanocrystalline photonic synapse. Adv. Mater. 35, 2304390 (2023).

    Article  Google Scholar 

  39. Alexoudi, T., Kanellos, G. T. & Pleros, N. Optical RAM and integrated optical memories: a survey. Light Sci. Appl. 9, 91 (2020).

    Article  ADS  Google Scholar 

  40. Miller, D. A. B. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    Article  ADS  MATH  Google Scholar 

  41. Pan, J.-A. et al. Ligand-assisted direct lithography of upconverting and avalanching nanoparticles for nonlinear photonics. J. Am. Chem. Soc. 146, 7487–7497 (2024).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 895809 (MONOCLE). X.Q., B.E.C. and E.M.C. were supported by the Defense Advanced Research Projects Agency (DARPA) under contract no. HR0011257070. Z.Z. and E.M.C. were supported by DARPA contract no. HR001118C0036. B.U. and P.J.S. acknowledge support from DARPA contract no. HR00112220006 and from the National Science Foundation grant no. CHE-2203510. Work at the Molecular Foundry was supported by the US Department of Energy (DOE) under contract no. DE-AC02-05CH11231 through the Office of Science, Office of Basic Energy Sciences (BES). Electron microscopy (X.Q., P.E. and E.M.C.) was funded in part under the same DOE contract through the BES Materials Sciences and Engineering Division within the KC22ZH program. Work at Universidad Autónoma de Madrid (D.J.) was financed by the Spanish Ministerio de Ciencia, Innovación y Universidades under project no. INCLINA PID2023-146775OB-I00 and by the Comunidad Autónoma de Madrid (S2022/BMD-7403 RENIM-CM).

Author information

Authors and Affiliations

Authors

Contributions

A.S., D.J. and E.M.C. designed and conceptualized the research. B.E.C., P.J.S., D.J. and E.M.C. directed the study. A.S. performed the optical characterization experiments, numerical simulations and data analysis. X.Q. and Z.Z. synthesized the nanoparticles. X.Q. and P.E. performed the electron microscopy imaging and analysis. B.U. automated the optical data acquisition. A.S. and E.M.C. wrote the original manuscript with B.E.C., P.J.S. and D.J. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Bruce E. Cohen, P. James Schuck, Daniel Jaque or Emory M. Chan.

Ethics declarations

Competing interests

A.S., Z.Z., B.E.C., P.J.S. and E.M.C. have submitted a United States patent application (#18/908,917) under review that describes the synthesis and application of low-phonon-energy nanoparticles based on alkali lead halides.

Peer review

Peer review information

Nature Photonics thanks Xiaogang Liu, Ute Resch-Genger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–7, Notes 1–3, Discussion 1, Materials and methods and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripka, A., Zhang, Z., Qi, X. et al. Intrinsic optical bistability of photon avalanching nanocrystals. Nat. Photon. 19, 212–218 (2025). https://doi.org/10.1038/s41566-024-01577-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01577-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing