Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brillouin laser-driven terahertz oscillator up to 3 THz with femtosecond-level timing jitter

Abstract

The terahertz (THz) frequency range, spanning from 0.1 to 10.0 THz, is a field ripe for innovation with vast, developing potential in areas like wireless communication and molecular spectroscopy. Our work introduces a dual-wavelength laser design that utilizes stimulated Brillouin scattering in an optical fibre cavity to effectively generate two highly coherent optical Stokes waves with inherently mitigated differential phase noise. To guarantee robust operation, the Stokes waves are optically injected into their respective pump lasers, which also serves to greatly improve the resulting coherence. The frequency difference between the two wavelengths is converted into THz waves through a uni-travelling-carrier photodiode. This innovative design facilitates the generation of THz waves with phase noise levels of less than –100 dBc Hz–1, translating to timing noise below 10 as Hz–1/2 at 10 kHz Fourier frequency, over a carrier frequency range from 300 GHz to 3 THz. This development in phase noise reduction establishes a new benchmark in the spectral purity of tunable THz sources. Such advances are pivotal for applications to move beyond oscillator constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the DWBL and the resulting spectra.
Fig. 2: Schematic for THz frequency metrology and results.
Fig. 3: Comparison of THz sources’ timing noise.

Similar content being viewed by others

Data availability

Raw data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Leitenstorfer, A. et al. The 2023 terahertz science and technology roadmap. J. Phys. D: Appl. Phys. 56, 223001 (2023).

    Article  ADS  Google Scholar 

  2. Kürner, T., Mittleman, D. M. & Nagatsuma, T. (eds) THz Communications: Paving the Way towards Wireless Tbps (Springer, 2022).

  3. Cliche, J.-F., Shillue, B., Latrasse, C., Têtu, M. & D’Addario, L. R. A high-coherence high-stability laser for the photonic local oscillator distribution of the Atacama Large Millimeter Array. In Ground-based Telescopes 1115–1126 (SPIE, 2004).

  4. Nand, N. R., Hartnett, J. G., Ivanov, E. N. & Santarelli, G. Ultra-stable very-low phase-noise signal source for very long baseline interferometry using a cryocooled sapphire oscillator. IEEE Trans. Microw. Theory Techn. 59, 2978–2986 (2011).

    Article  ADS  Google Scholar 

  5. Schoeberl, M. R. et al. Overview of the EOS Aura mission. IEEE Trans. Geosci. Remote Sens. 44, 1066–1074 (2006).

    Article  ADS  Google Scholar 

  6. Nanni, E. A. et al. Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015).

    Article  ADS  Google Scholar 

  7. Motiyenko, R. A., Ilyushin, V. V., Drouin, B. J., Yu, S. & Margulès, L. Rotational spectroscopy of methylamine up to 2.6 THz. Astron. Astrophys. 563, A137 (2014).

    Article  ADS  Google Scholar 

  8. Swearer, D. F. et al. Monitoring chemical reactions with terahertz rotational spectroscopy. ACS Photonics 5, 3097–3106 (2018).

    Article  Google Scholar 

  9. Wang, C. et al. An on-chip fully electronic molecular clock based on sub-terahertz rotational spectroscopy. Nat. Electron. 1, 421–427 (2018).

    Article  Google Scholar 

  10. Cuisset, A. et al. Terahertz rotational spectroscopy of greenhouse gases using long interaction path-lengths. Appl. Sci. 11, 1229 (2021).

    Article  Google Scholar 

  11. Wang, C., Yi, X., Kim, M., Yang, Q. B. & Han, R. A terahertz molecular clock on CMOS using high-harmonic-order interrogation of rotational transition for medium-/long-term stability enhancement. IEEE J. Solid-State Circuits 56, 566–580 (2021).

    Article  ADS  Google Scholar 

  12. Alouini, M., Brunel, M., Bretenaker, F., Vallet, M. & Le Floch, A. Dual tunable wavelength Er,Yb:glass laser for terahertz beat frequency generation. IEEE Photon. Technol. Lett. 10, 1554–1556 (1998).

    Article  ADS  Google Scholar 

  13. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  14. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article  ADS  Google Scholar 

  15. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article  ADS  Google Scholar 

  16. Fortier, T. M. et al. Optically referenced broadband electronic synthesizer with 15 digits of resolution. Laser Photonics Rev. 10, 780–790 (2016).

    Article  ADS  Google Scholar 

  17. Zhang, S. et al. Terahertz wave generation using a soliton microcomb. Opt. Express 27, 35257–35266 (2019).

    Article  ADS  Google Scholar 

  18. Wang, B. et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl. 10, 4 (2021).

    Article  ADS  Google Scholar 

  19. Kuse, N. et al. Low phase noise THz generation from a fiber-referenced Kerr microresonator soliton comb. Commun. Phys. 5, 312 (2022).

    Article  Google Scholar 

  20. Kittlaus, E. A. et al. A low-noise photonic heterodyne synthesizer and its application to millimeter-wave radar. Nat. Commun. 12, 4397 (2021).

    Article  ADS  Google Scholar 

  21. Djevahirdjian, L. et al. Frequency stable and low phase noise THz synthesis for precision spectroscopy. Nat. Commun. 14, 7162 (2023).

    Article  ADS  Google Scholar 

  22. Rolland, A. et al. Narrow linewidth tunable terahertz radiation by photomixing without servo-locking. IEEE Trans. THz Sci. Technol. 4, 260–266 (2014).

    Article  Google Scholar 

  23. Kim, N. et al. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation. Opt. Express 17, 13851–13859 (2009).

    Article  ADS  Google Scholar 

  24. Quraishi, Q., Griebel, M., Kleine-Ostmann, T. & Bratschitsch, R. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime. Opt. Lett. 30, 3231–3233 (2005).

    Article  ADS  Google Scholar 

  25. Shin, D.-C., Kim, B. S., Jang, H., Kim, Y.-J. & Kim, S.-W. Photonic comb-rooted synthesis of ultra-stable terahertz frequencies. Nat. Commun. 14, 790 (2023).

    Article  ADS  Google Scholar 

  26. Smith, S. P., Zarinetchi, F. & Ezekiel, S. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991).

    Article  ADS  Google Scholar 

  27. Loh, W., Papp, S. B. & Diddams, S. A. Noise and dynamics of stimulated-Brillouin-scattering microresonator lasers. Phys. Rev. A 91, 053843 (2015).

    Article  ADS  Google Scholar 

  28. Ducournau, G. et al. Highly coherent terahertz wave generation with a dual-frequency Brillouin fiber laser and a 1.55 μm photomixer. Opt. Lett. 36, 2044–2046 (2011).

    Article  ADS  Google Scholar 

  29. Debut, A., Randoux, S. & Zemmouri, J. Linewidth narrowing in Brillouin lasers: theoretical analysis. Phys. Rev. A 62, 023803 (2000).

    Article  ADS  Google Scholar 

  30. Loh, W., Yegnanarayanan, S., O’Donnell, F. & Juodawlkis, P. W. Ultra-narrow linewidth Brillouin laser with nanokelvin temperature self-referencing. Optica 6, 152–159 (2019).

    Article  ADS  Google Scholar 

  31. Li, Y. et al. Low-noise millimeter-wave synthesis from a dual-wavelength fiber Brillouin cavity. Opt. Lett. 44, 359–362 (2019).

    Article  ADS  Google Scholar 

  32. Danion, G. et al. Mode-hopping suppression in long Brillouin fiber laser with non-resonant pumping. Opt. Lett. 41, 2362–2365 (2016).

    Article  ADS  Google Scholar 

  33. Huang, X. et al. Linewidth suppression mechanism of self-injection locked single-frequency fiber laser. Opt. Express 24, 18907–18916 (2016).

    Article  ADS  Google Scholar 

  34. Huang, S. et al. Tens of Hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering. Opt. Lett. 42, 5286–5289 (2017).

    Article  ADS  Google Scholar 

  35. Lopez-Mercado, C. A., Korobko, D. A., Zolotovskii, I. O. & Fotiadi, A. A. Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis. Sensors 21, 6859 (2021).

    Article  ADS  Google Scholar 

  36. Alouini, M., Danion, G. & Vallet, M. Ultra-narrow linewidth self-adaptive photonic oscillator: principle and realization. Preprint at https://arxiv.org/abs/2108.03468 (2021).

  37. Liu, Z. & Slavík, R. Optical injection locking: from principle to applications. J. Lightwave Technol. 38, 43–59 (2020).

    Article  ADS  Google Scholar 

  38. Ishibashi, T. et al. Uni-traveling-carrier photodiodes. In Ultrafast Electronics and Optoelectronics UC3 (Optica Publishing Group, 1997).

  39. Rolland, A. et al. Non-linear optoelectronic phase-locked loop for stabilization of opto-millimeter waves: towards a narrow linewidth tunable THz source. Opt. Express 19, 17944–17950 (2011).

    Article  ADS  Google Scholar 

  40. Kuse, N. & Fermann, M. E. A photonic frequency discriminator based on a two wavelength delayed self-heterodyne interferometer for low phase noise tunable micro/mm wave synthesis. Sci. Rep. 8, 13719 (2018).

    Article  ADS  Google Scholar 

  41. DeSalvo, J. A., Hati, A., Nelson, C. & Howe, D. A. Phase-noise measurement system for the terahertz-band. IEEE Trans. THz Sci. Technol. 2, 638–641 (2012).

    Article  Google Scholar 

  42. Lampin, J.-F. et al. Quantum cascade laser-pumped terahertz molecular lasers: frequency noise and phase-locking using a 1560 nm frequency comb. Opt. Express 28, 2091–2106 (2020).

    Article  ADS  Google Scholar 

  43. Tetsumoto, T. et al. 300 GHz wave generation based on a Kerr microresonator frequency comb stabilized to a low noise microwave reference. Opt. Lett. 45, 4377–4380 (2020).

    Article  ADS  Google Scholar 

  44. Wang, W. et al. Coherent terahertz radiation with 2.8-octave tunability through chip-scale photomixed microresonator optical parametric oscillation. Nat. Commun. 13, 5123 (2022).

    Article  ADS  Google Scholar 

  45. Freeman, J. R. et al. Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb. Optica 4, 1059–1064 (2017).

    Article  ADS  Google Scholar 

  46. Audoin, C., Candelier, V. & Diamarcq, N. A limit to the frequency stability of passive frequency standards due to an intermodulation effect. IEEE Trans. Instrum. Meas. 40, 121–125 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to T. Nagatsuma of Osaka University for providing us with the 600 GHz UTC-PD and detector. The second DWBL was built using funding provided through the National Institute of Information and Communications Technology (NICT), Japan, grant no. JPJ012368C-00901 (T.H. and T.T.).

Author information

Authors and Affiliations

Authors

Contributions

B.M.H., T.H., T.T. and A.R. designed, built and operated the DWBLs and the characterization setups. B.M.H., J.G. and A.R. acquired, analysed and interpreted the data. B.M.H. and A.R. drafted the initial manuscript, with all co-authors contributing to the final version. A.R. initiated, conceived and supervised the project.

Corresponding authors

Correspondence to Brendan M. Heffernan or Antoine Rolland.

Ethics declarations

Competing interests

B.M.H., A.R. and J.G. are inventors on a patent application filed in the USA (US20230333012A1) that may be related to the subject matter disclosed in this Article. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Lute Maleki, Thomas Schneider and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–8 and discussion.

Source data

Source Data Fig. 1

Data used to generate Fig. 1.

Source Data Fig. 2

Data used to generate Fig. 2.

Source Data Fig. 3

Data used to generate Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heffernan, B.M., Greenberg, J., Hori, T. et al. Brillouin laser-driven terahertz oscillator up to 3 THz with femtosecond-level timing jitter. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01513-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01513-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing