Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of Floquet states and their dephasing in colloidal nanoplatelets driven by visible pulses

Abstract

Coherent interaction between light and matter generates photon-dressed replicas of the original electronic levels (that is, Floquet states). This opens up a so-called field of Floquet engineering that applies electromagnetic fields to create new non-equilibrium phases of solid-state materials. The direct observation of such Floquet states, which often requires low-temperature, high-vacuum housing of the interrogated materials and low-energy infrared photons or microwaves as the driver, has been challenging. Here we report the observation of Floquet states in CdSe nanoplatelets, which are the colloidal analogue of quantum wells, under ambient conditions using femtosecond transient absorption. A sub-bandgap visible photon dresses a heavy-hole state (|hh1〉) to a Floquet state (|hh1 + ωL〉) that can hybridize with the first quantized electron state (|e1〉). This enables us to probe the Floquet state using a near-infrared photon through its transition to the second quantized electron state (|e2〉). Dephasing of the Floquet state into the real population of |e1〉 is also directly observed with a dephasing time of a few hundred femtoseconds, which is well reproduced by our density matrix simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of colloidal CdSe NPLs.
Fig. 2: Observation of Floquet states in NPLs.
Fig. 3: Floquet states observed with different driving photon energies.
Fig. 4: Simulating the spectrum and dynamics of Floquet states.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information and can be obtained from K.W. upon reasonable request. They are also available from Figshare at https://doi.org/10.6084/m9.figshare.26011303 (ref. 51). Source data are provided with this paper.

Code availability

All codes are available from K.W. upon reasonable request.

References

  1. Shirley, J. H. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965).

    Article  ADS  Google Scholar 

  2. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  ADS  Google Scholar 

  3. Rudner, M. S. & Lindner, N. H. Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. 2, 229–244 (2020).

    Article  Google Scholar 

  4. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  Google Scholar 

  5. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article  Google Scholar 

  6. Park, S. et al. Steady Floquet–Andreev states in graphene Josephson junctions. Nature 603, 421–426 (2022).

    Article  ADS  Google Scholar 

  7. Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article  ADS  Google Scholar 

  8. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  ADS  Google Scholar 

  9. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article  ADS  Google Scholar 

  10. Sie, E. J. et al. Large, valley-exclusive Bloch–Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017).

    Article  ADS  Google Scholar 

  11. Li, Y. et al. Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots. Nat. Commun. 13, 5559 (2022).

    Article  ADS  Google Scholar 

  12. Cunningham, P. D., Hanbicki, A. T., Reinecke, T. L., McCreary, K. M. & Jonker, B. T. Resonant optical Stark effect in monolayer WS2. Nat. Commun. 10, 5539 (2019).

    Article  ADS  Google Scholar 

  13. Carter, S. G. et al. Quantum coherence in an optical modulator. Science 310, 651–653 (2005).

    Article  ADS  Google Scholar 

  14. Yong, C.-K. et al. Valley-dependent exciton fine structure and Autler–Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater. 18, 1065–1070 (2019).

    Article  ADS  Google Scholar 

  15. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    Article  ADS  Google Scholar 

  16. Lin, K.-Q., Bange, S. & Lupton, J. M. Quantum interference in second-harmonic generation from monolayer WSe2. Nat. Phys. 15, 242–246 (2019).

    Article  Google Scholar 

  17. Bauer, J. M. et al. Excitonic resonances control the temporal dynamics of nonlinear optical wave mixing in monolayer semiconductors. Nat. Photon. 16, 777–783 (2022).

    Article  ADS  Google Scholar 

  18. Phillips, M. C. et al. Electromagnetically induced transparency in semiconductors via biexciton coherence. Phys. Rev. Lett. 91, 183602 (2003).

    Article  ADS  Google Scholar 

  19. Dynes, J. F., Frogley, M. D., Beck, M., Faist, J. & Phillips, C. C. ac Stark splitting and quantum interference with intersubband transitions in quantum wells. Phys. Rev. Lett. 94, 157403 (2005).

    Article  ADS  Google Scholar 

  20. Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

    Article  ADS  Google Scholar 

  21. Kobayashi, Y. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023).

    Google Scholar 

  22. Cabra, G., Franco, I. & Galperin, M. Optical properties of periodically driven open non-equilibrium quantum systems. J. Chem. Phys. 152, 094101 (2020).

    Article  ADS  Google Scholar 

  23. Sato, S. A. et al. Floquet states in dissipative open quantum systems. J. Phys. B At. Mol. Opt. Phys. 53, 225601 (2020).

    Article  ADS  Google Scholar 

  24. Chen, H. et al. Periodically driven open quantum systems: spectral properties and non-equilibrium steady states. Phys. Rev. B 109, 184309 (2024).

    Article  ADS  Google Scholar 

  25. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    Article  ADS  Google Scholar 

  26. Lhuillier, E. et al. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015).

    Article  Google Scholar 

  27. Mahler, B., Nadal, B., Bouet, C., Patriarche, G. & Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134, 18591–18598 (2012).

    Article  Google Scholar 

  28. Dufour, M. et al. Halide ligands to release strain in cadmium chalcogenide nanoplatelets and achieve high brightness. ACS Nano 13, 5326–5334 (2019).

    Article  Google Scholar 

  29. Diroll, B. T. Ligand-dependent tuning of interband and intersubband transitions of colloidal CdSe nanoplatelets. Chem. Mater. 32, 5916–5923 (2020).

    Article  Google Scholar 

  30. West, L. C. & Eglash, S. J. First observation of an extremely large‐dipole infrared transition within the conduction band of a GaAs quantum well. Appl. Phys. Lett. 46, 1156–1158 (1985).

    Article  ADS  Google Scholar 

  31. Diroll, B. T. et al. Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nat. Commun. 10, 4511 (2019).

    Article  ADS  Google Scholar 

  32. Christodoulou, S. et al. Chloride-induced thickness control in CdSe nanoplatelets. Nano Lett. 18, 6248–6254 (2018).

    Article  ADS  Google Scholar 

  33. Xiang, D. et al. Electron and hole spin relaxation in CdSe colloidal nanoplatelets. J. Phys. Chem. Lett. 12, 86–93 (2021).

    Article  Google Scholar 

  34. Benchamekh, R. et al. Tight-binding calculations of image-charge effects in colloidal nanoscale platelets of CdSe. Phys. Rev. B 89, 035307 (2014).

    Article  ADS  Google Scholar 

  35. Grim, J. Q. et al. Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nat. Nanotechnol. 9, 891–895 (2014).

    Article  ADS  Google Scholar 

  36. Ma, X. et al. Anisotropic photoluminescence from isotropic optical transition dipoles in semiconductor nanoplatelets. Nano Lett. 18, 4647–4652 (2018).

    Article  ADS  Google Scholar 

  37. Diroll, B. T. Circularly polarized optical Stark effect in CdSe colloidal quantum wells. Nano Lett. 20, 7889–7895 (2020).

    Article  ADS  Google Scholar 

  38. Geiregat, P. et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced Stark effect. Light Sci. Appl. 10, 112 (2021).

    Article  ADS  Google Scholar 

  39. Xiang, D., Li, Y., Wang, L., Zhao, Y. & Wu, K. Coupled double optical Stark effect in CdSe colloidal nanoplatelets. ACS Photonics 8, 745–751 (2021).

    Article  Google Scholar 

  40. Zhang, Z. et al. Study of complex optical constants of neat cadmium selenide nanoplatelets thin films by spectroscopic ellipsometry. J. Phys. Chem. Lett. 12, 191–198 (2021).

    Article  Google Scholar 

  41. Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 401, 273–294 (1931).

    Article  Google Scholar 

  42. Chu, S.-I. in Advances in Atomic and Molecular Physics Vol. 21 (eds Bates, D. R. & Bederson, B.) 197–253 (Academic, 1985).

  43. Chu, S.-I. & Telnov, D. A. Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Phys. Rep. 390, 1–131 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  44. Morimoto, T. & Nagaosa, N. Topological nature of non-linear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  ADS  Google Scholar 

  45. Naeem, A. et al. Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Phys. Rev. B 91, 121302 (2015).

    Article  ADS  Google Scholar 

  46. Harris, R. D. et al. Electronic processes within quantum dot–molecule complexes. Chem. Rev. 116, 12865–12919 (2016).

    Article  ADS  Google Scholar 

  47. Zhu, H., Yang, Y., Wu, K. & Lian, T. Charge transfer dynamics from photoexcited semiconductor quantum dots. Annu. Rev. Phys. Chem. 67, 259–281 (2016).

    Article  ADS  Google Scholar 

  48. Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M. & Castellano, F. N. Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369–372 (2016).

    Article  ADS  Google Scholar 

  49. Liang, W. et al. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photon. 17, 346–353 (2023).

    Article  ADS  Google Scholar 

  50. Ithurria, S., Bousquet, G. & Dubertret, B. Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. J. Am. Chem. Soc. 133, 3070–3077 (2011).

    Article  Google Scholar 

  51. Li, Y. et al. Figures for Floquet states and their dephasing in colloidal nanoplatelets. Figshare https://doi.org/10.6084/m9.figshare.26011303 (2024).

Download references

Acknowledgements

K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), the National Natural Science Foundation of China (22173098) and the Dalian Institute of Chemical Physics (DICP I202106). K.W. also acknowledges the New Cornerstone Science Foundation through the XPLORER PRIZE.

Author information

Authors and Affiliations

Authors

Contributions

K.W. supervised the project. Y.Li and J.Z. synthesized the samples and conducted the spectroscopic measurements. J.Z. carried out the quantum mechanical simulations. Y.Y. and Y.Liu helped with the sample synthesis. K.W., J.Z. and Y.Li wrote the paper with input from all of the authors.

Corresponding authors

Correspondence to Jingyi Zhu or Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Pieter Geiregat, Yuki Kobayashiand the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4 and Figs. 1–7.

Source data

Source Data Fig. 1

Source data in spreadsheet.

Source Data Fig. 2

Source data in spreadsheet.

Source Data Fig. 3

Source data in spreadsheet.

Source Data Fig. 4

Source data in spreadsheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, Y., Liu, Y. et al. Observation of Floquet states and their dephasing in colloidal nanoplatelets driven by visible pulses. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01505-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing