Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal

Abstract

Polarization, a fundamental property of light, has been widely exploited from quantum physics to high-dimensional optics. Materials with intrinsic optical anisotropy, such as dichroism and birefringence, are central to light polarization control, including the development of polarizers, waveplates, mirrors and phase-matching elements. Therefore, materials with strong optical anisotropy have been long-sought. Recently, two-dimensional van der Waals crystals show high optical anisotropy but are mostly restricted to the out-of-plane direction, which is challenging to access in optical engineering. Here we report a two-dimensional van der Waals material, NbOCl2, that exhibits sharp electronic and structural contrast between its in-plane orthogonal axes. Colossal in-plane optical anisotropy—linear dichroism (up to 99% in ultraviolet) and birefringence (0.26–0.46 within a wide visible–near-infrared transparency window)—is experimentally demonstrated. Our findings provide a powerful and easy-to-access recipe for ultracompact integrated polarization industries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical anisotropy in 2D vdW crystals: in-plane versus out-of-plane anisotropy.
Fig. 2: Structure and in-plane LD of NbOCl2.
Fig. 3: In-plane optical constants and birefringence of NbOCl2.
Fig. 4: In-depth investigations of the large in-plane dielectric anisotropy.

Similar content being viewed by others

Data availability

All relevant data are available in the main text, in the Supporting Information or from the authors upon reasonable request.

References

  1. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  Google Scholar 

  2. Rubin, N. A., Shi, Z. & Capasso, F. Polarization in diffractive optics and metasurfaces. Adv. Opt. Photon. 13, 836 (2022).

    Article  Google Scholar 

  3. Xu, H. et al. Magnetically tunable and stable deep-ultraviolet birefringent optics using two-dimensional hexagonal boron nitride. Nat. Nanotechnol. 17, 1091 (2022).

    Article  ADS  Google Scholar 

  4. Damask, J. N. Polarization Optics in Telecommunications (Springer, 2004).

  5. Ermolaev, G. A. et al. Giant optical anisotropy in transition metal dichalcogenides for next-generation photonics. Nat. Commun. 12, 854 (2021).

    Article  ADS  Google Scholar 

  6. Kaminsky, W., Claborn, K. & Kahr, B. Polarimetric imaging of crystals. Chem. Soc. Rev. 33, 514–525 (2004).

    Article  Google Scholar 

  7. Ma, L. L. et al. Self-assembled liquid crystal architectures for soft matter photonics. Light Sci. Appl. 11, 270 (2022).

    Article  ADS  Google Scholar 

  8. Niu, S. et al. Giant optical anisotropy in a quasi-one-dimensional crystal. Nat. Photon. 12, 392–396 (2018).

    Article  ADS  Google Scholar 

  9. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    Article  ADS  Google Scholar 

  10. Li, X. et al. Review of anisotropic 2D materials: controlled growth, optical anisotropy modulation, and photonic applications. Laser Photon. Rev. 15, 2100322 (2021).

    Article  ADS  Google Scholar 

  11. Li, L. et al. Emerging in‐plane anisotropic two‐dimensional materials. InfoMat 1, 54–73 (2019).

    Article  Google Scholar 

  12. Guo, Q. et al. Ultrathin quantum light source with van der Waals NbOCl2 crystal. Nature 613, 53–59 (2023).

    Article  ADS  Google Scholar 

  13. Elias, C. et al. Flat bands and giant light-matter interaction in hexagonal boron nitride. Phys. Rev. Lett. 127, 137401 (2021).

    Article  ADS  Google Scholar 

  14. Carvalho, A., Ribeiro, R. M. & Castro Neto, A. H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 88, 115205 (2013).

    Article  ADS  Google Scholar 

  15. Mao, N. et al. Optical anisotropy of black phosphorus in the visible regime. J. Am. Chem. Soc. 138, 300–305 (2016).

    Article  Google Scholar 

  16. Yang, H. et al. Optical waveplates based on birefringence of anisotropic two-dimensional layered materials. ACS Photon. 4, 3023–3030 (2017).

    Article  Google Scholar 

  17. Zhou, Z. et al. Perpendicular optical reversal of the linear dichroism and polarized photodetection in 2D GeAs. ACS Nano 12, 12416–12423 (2018).

    Article  Google Scholar 

  18. Hou, S. et al. Birefringence and dichroism in quasi-1D transition metal trichalcogenides: direct experimental investigation. Small 17, e2100457 (2021).

    Article  Google Scholar 

  19. Papadopoulos, N. et al. Large birefringence and linear dichroism in TiS3 nanosheets. Nanoscale 10, 12424–12429 (2018).

    Article  Google Scholar 

  20. Yu, J. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 20, 1172–1182 (2020).

    Article  ADS  Google Scholar 

  21. Zhang, Q. et al. Observation of giant optical linear dichroism in a zigzag antiferromagnet FePS3. Nano Lett. 21, 6938–6945 (2021).

    Article  ADS  Google Scholar 

  22. Fang, Y., Wang, F., Wang, R., Zhai, T. & Huang, F. 2D NbOI2: a chiral semiconductor with highly in-plane anisotropic electrical and optical properties. Adv. Mater. 33, 2101505 (2021).

    Article  Google Scholar 

  23. Yang, Y. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 1394–1399 (2014).

    Article  ADS  Google Scholar 

  24. Huang, Y. et al. Dual‐functional metasurface toward giant linear and circular dichroism. Adv. Opt. Mater. 8, 1902061 (2020).

    Article  Google Scholar 

  25. Wu, J. et al. Linear dichroism conversion in quasi-1D perovskite chalcogenide. Adv. Mater. 31, 1902118 (2019).

    Article  Google Scholar 

  26. Siefke, T. et al. Materials pushing the application limits of wire grid polarizers further into the deep ultraviolet spectral range. Adv. Opt. Mater. 4, 1780–1786 (2016).

    Article  Google Scholar 

  27. Zhang, H. et al. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nat. Photon. 16, 311–317 (2022).

    Article  ADS  Google Scholar 

  28. Ghosh, G. Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals. Opt. Commun. 163, 95–102 (1999).

    Article  ADS  Google Scholar 

  29. Zelmon, D. E., Small, D. L. & Jundt, D. Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3322 (1997).

    Article  ADS  Google Scholar 

  30. Sinton, W. M. Birefringence of rutile in the infrared. J. Opt. Soc. Am. 51, 1309–1310 (1961).

    Article  Google Scholar 

  31. Zhou, G. et al. Growth and spectrum of a novel birefringent α-BaB2O4 crystal. J. Cryst. Growth 191, 517–519 (1998).

    Article  Google Scholar 

  32. Dodge, M. J. Refractive properties of magnesium fluoride. Appl. Opt. 23, 1980–1985 (1984).

    Article  ADS  Google Scholar 

  33. Czyzak, S. J., Crane, R. C. & Bieniewshi, T. M. Dichroism in essentially pure and activated cadmium sulfide single crystals. J. Opt. Soc. Am. 49, 485–488 (1959).

    Article  ADS  Google Scholar 

  34. Munkhbat, B., Wrobel, P., Antosiewicz, T. J. & Shegai, T. O. Optical constants of several multilayer transition metal dichalcogenides measured by spectroscopic ellipsometry in the 300–1700 nm range: high index, anisotropy, and hyperbolicity. ACS Photon. 9, 2398–2407 (2022).

    Article  Google Scholar 

  35. Rumble, J. (ed.) CRC Handbook of Chemistry and Physics 95th edn (CRC Press, 2014–2015).

  36. Khurgin, J. B. Expanding the photonic palette: exploring high index materials. ACS Photon. 9, 7743–7751 (2022).

    Article  Google Scholar 

  37. Tian, T. et al. Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials. Nano Lett. 20, 841–851 (2020).

    Article  ADS  Google Scholar 

  38. Mei, H. et al. Colossal optical anisotropy from atomic-scale modulations. Adv. Mater. 35, 2303588 (2023).

    Article  Google Scholar 

  39. Tong, T., Zhang, W., Yang, Z. & Pan, S. Series of crystals with giant optical anisotropy: a targeted strategic research. Angew. Chem. Int. Ed. 60, 1332–1338 (2021).

    Article  Google Scholar 

  40. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  Google Scholar 

  42. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  43. Rohlfing, M. & Louie, S. G. Electron-hole excitations and optical spectra from first principles. Phys. Rev. B 62, 4927–4944 (2000).

    Article  ADS  Google Scholar 

  44. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Research Foundation, Prime Minister’s Office, Singapore, under Competitive Research Program Award NRF-CRP26-2021-0004 and NRF-CRP22-2019-0006, and by a grant (A-8002152-00-00) from the Ministry of Education, Singapore. Q.G. thanks W. Zang and S. J. Pennycook and for support with STEM. Q.G. thanks Q. Zhao, C. Shen and Y. Nie from Ideaoptics Inc. for help with microspectroscopy measurements. Q.G. thanks S. Hu and L. Zhang for helpful discussions. Q.G. thanks H. Wang for optical measurements. Q.G. and C.-W.Q. thank P. Zhu and M. Ren for help with optical measurements. Q.G. and C.-W.Q. thank J. Zhao, Q. Zheng and X. Tian for helpful discussions. Q.Z. acknowledges the financial support from the Research Funds of Hangzhou Institute for Advanced Study, UCAS (A05006C019014 and B03006C01600407), and Zhejiang Provincial Natural Science Foundation (grant number LQ24H180008).

Author information

Authors and Affiliations

Authors

Contributions

Q.G. and C.-W.Q. conceived and coordinated this work. Q.G. and Q.Z. synthesized the crystals and measured the optical transmission and reflection spectra. Q.G. and T.Z. calculated and extracted the optical constants. J.Z. and Y.P.F. did the theoretical calculations. Q.G. analysed the data and wrote the paper with revision from C.-W.Q. All authors discussed the results and contributed to the paper. Q.G. and C.-W.Q. supervised the project.

Corresponding authors

Correspondence to Qiangbing Guo or Cheng-Wei Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Yuanmu Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Sections 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Zhang, Q., Zhang, T. et al. Colossal in-plane optical anisotropy in a two-dimensional van der Waals crystal. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01501-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing