Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anti-perovskites with long carrier lifetime for ultralow dose and stable X-ray detection

Abstract

Halide perovskites have shown promising potential for direct X-ray detection due to their high X-ray absorption coefficient, low trap states and convenient fabrication process. However, it is still a challenge to achieve high sensitivity, low dark current and low detection limit in a single material. The deep reason for this is the trade-off between the material’s μτ product and resistivity. Here we report the construction of an organic–inorganic hybrid anti-perovskite ((2-Habch)3Cl(PtI6)) with indirect transition and low orbital symmetry at the band edge to achieve an ultralong intrinsic lifetime and thus break the trade-off. (2-Habch)3Cl(PtI6) achieves an unprecedented long carrier lifetime of >3 ms, leading to a large μτ product of 6.25 × 10−3 cm2 V−1 and high resistivity of 1012 Ω cm, outperforming most X-ray detection materials. These properties enabled the development of X-ray detectors that simultaneously achieve an ultralow dark current of 0.21 nA cm−2, high sensitivity of 1.0 × 104 µC Gyair−1 cm−2, ultralow detection limit of 2.4 nGyair s−1 and excellent operational stability with no observable baseline drift, outperforming state-of-the-art perovskite single-crystal detectors. The rare combination of high performance in almost every figure of merit in the anti-perovskite-based X-ray detector could enable new-generation X-ray detection systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-perovskite structure and characterization of carrier lifetime.
Fig. 2: Band structure of (2-Habch)3Cl(PtI6).
Fig. 3: Electrical properties and stability characterization of (2-Habch)3Cl(PtI6).
Fig. 4: Performance of the (2-Habch)3Cl(PtI6) X-ray detector.

Similar content being viewed by others

Data availability

The main data that support the findings of this study are available in this article and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16, 14–26 (2022).

    Article  ADS  Google Scholar 

  2. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    Article  ADS  Google Scholar 

  3. Wu, H., Ge, Y., Niu, G. & Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 4, 144–163 (2021).

    Article  Google Scholar 

  4. Zhao, L. et al. High-yield growth of FACsPbBr3 single crystals with low defect density from mixed solvents for gamma-ray spectroscopy. Nat. Photon. 17, 315–323 (2023).

    ADS  Google Scholar 

  5. Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature 550, 87–91 (2017).

    Article  ADS  Google Scholar 

  6. Deumel, S. et al. High-sensitivity high-resolution X-ray imaging with soft-sintered metal halide perovskites. Nat. Electron. 4, 681–688 (2021).

    Article  Google Scholar 

  7. Xu, X. et al. Halide perovskites: a dark horse for direct X‐ray imaging. EcoMat 2, e12064 (2020).

    Article  Google Scholar 

  8. Li, Z. et al. Halide perovskites for high-performance X-ray detector. Mater. Today 48, 155–175 (2021).

    Article  Google Scholar 

  9. Jiang, J. et al. Synergistic strain engineering of perovskite single crystals for highly stable and sensitive X-ray detectors with low-bias imaging and monitoring. Nat. Photon. 16, 575–581 (2022).

    Article  ADS  Google Scholar 

  10. Song, Y. et al. Elimination of interfacial-electrochemical-reaction-induced polarization in perovskite single crystals for ultra-sensitive and stable X-ray detector arrays. Adv. Mater. 33, 2103078 (2021).

    Article  Google Scholar 

  11. Li, N. et al. High-performance and self-powered X-ray detectors made of smooth perovskite microcrystalline films with 100-μm grains. Angew. Chem. Int. Ed. 62, e202302435 (2023).

    Article  ADS  Google Scholar 

  12. Choquette, M. et al. Direct Selenium X-ray Detector for Fluoroscopy, R&F and Radiography Vol. 3977 MI (SPIE, 2000).

  13. Wang, C.-F. et al. One-dimensional lead-free perovskite single crystal with high X-ray response grown by liquid phase diffusion. J. Mater. Chem. C 11, 134–140 (2023).

    Article  Google Scholar 

  14. Li, X. et al. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals. ACS Appl. Mater. Interfaces 14, 9340–9351 (2022).

    Article  Google Scholar 

  15. Owens, A. & Peacock, A. Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 531, 18–37 (2004).

    Article  ADS  Google Scholar 

  16. Fermi, E. Nuclear Physics: a Course Given by Enrico Fermi at the University of Chicago (Univ. Chicago Press, 1950).

  17. Peter, Y. & Cardona, M. Fundamentals of Semiconductors: Physics and Materials Properties (Springer, 2010).

  18. Yin, W.-J., Yang, J.-H., Kang, J., Yan, Y. & Wei, S.-H. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015).

    Article  Google Scholar 

  19. Chen, L. et al. Toward long-term stability: single-crystal alloys of cesium-containing mixed cation and mixed halide perovskite. J. Am. Chem. Soc. 141, 1665–1671 (2019).

    Article  Google Scholar 

  20. Wei, H. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nat. Mater. 16, 826–833 (2017).

    Article  ADS  Google Scholar 

  21. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  22. Saidaminov, M. I. et al. Inorganic lead halide perovskite single crystals: phase-selective low-temperature growth, carrier transport properties and self-powered photodetection. Adv. Opt. Mater. 5, 1600704 (2017).

    Article  Google Scholar 

  23. Slavney, A. H., Hu, T., Lindenberg, A. M. & Karunadasa, H. I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016).

    Article  Google Scholar 

  24. Ma, L. et al. A polymer controlled nucleation route towards the generalized growth of organic–inorganic perovskite single crystals. Nat. Commun. 12, 2023 (2021).

    Article  ADS  Google Scholar 

  25. Gebhardt, J. & Rappe, A. M. Adding to the perovskite universe: inverse-hybrid perovskites. ACS Energy Lett. 2, 2681–2685 (2017).

    Article  Google Scholar 

  26. Wang, Y. et al. Antiperovskites with exceptional functionalities. Adv. Mater. 32, 1905007 (2020).

    Article  Google Scholar 

  27. He, Y. et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer. Cryst. Growth Des. 19, 2074–2080 (2019).

    Article  Google Scholar 

  28. Gebhardt, J. & Rappe, A. M. Design of metal-halide inverse-hybrid perovskites. J. Phys. Chem. C 122, 13872–13883 (2018).

    Article  Google Scholar 

  29. Han, D. et al. Design of high-performance lead-free quaternary antiperovskites for photovoltaics via ion type inversion and anion ordering. J. Am. Chem. Soc. 143, 12369–12379 (2021).

    Article  Google Scholar 

  30. Lin, W. et al. TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature. ACS Photon. 4, 1805–1813 (2017).

    Article  Google Scholar 

  31. Shi, C. et al. Hybrid organic-inorganic antiperovskites. Angew. Chem. Int. Ed. 59, 167–171 (2020).

    Article  Google Scholar 

  32. Batail, P. et al. Antiperovskite structure with ternary tetrathiafulvalenium salts: construction, distortion and antiferromagnetic ordering. Angew. Chem. Int. Ed. 30, 1498–1500 (1991).

    Article  Google Scholar 

  33. He, Y. et al. Defect antiperovskite compounds Hg3Q2I2 (Q = S, Se and Te) for room-temperature hard radiation detection. J. Am. Chem. Soc. 139, 7939–7951 (2017).

    Article  Google Scholar 

  34. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  ADS  Google Scholar 

  35. Kasap, S. et al. Amorphous selenium and its alloys from early xeroradiography to high resolution X‐ray image detectors and ultrasensitive imaging tubes. Phys. Stat. Sol. B 246, 1794–1805 (2009).

    Article  ADS  Google Scholar 

  36. Fu, P., Hu, S., Tang, J. & Xiao, Z. Material exploration via designing spatial arrangement of octahedral units: a case study of lead halide perovskites. Front. Optoelectron. 14, 252–259 (2021).

    Article  Google Scholar 

  37. Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Article  Google Scholar 

  38. Sajedi Alvar, M., Blom, P. W. M. & Wetzelaer, G.-J. A. H. Space–charge-limited electron and hole currents in hybrid organic–inorganic perovskites. Nat. Commun. 11, 4023 (2020).

    Article  ADS  Google Scholar 

  39. Liu, Y. et al. Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Sci. Adv. 7, eabc8844 (2021).

    Article  ADS  Google Scholar 

  40. Zhang, P. et al. Ultrasensitive and robust 120-keV hard X-ray imaging detector based on mixed-halide perovskite CsPbBr3−nIn single crystals. Adv. Mater. 34, 2106562 (2022).

    Article  Google Scholar 

  41. Kim, K. et al. Purification of CdZnTe by electromigration. J. Appl. Phys. 117, 145702 (2015).

    Article  ADS  Google Scholar 

  42. He, Y. et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals. ACS Photon. 5, 4132–4138 (2018).

    Article  Google Scholar 

  43. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  Google Scholar 

  44. He, Y. et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun. 9, 1609 (2018).

    Article  ADS  Google Scholar 

  45. Yang, B. et al. Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging. Nat. Commun. 10, 1989 (2019).

    Article  ADS  Google Scholar 

  46. Berger, M. J. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013); https://www.nist.gov/pml/xcom-photon-cross-sections-database

  47. Pan, W. et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nat. Photon. 11, 726–732 (2017).

    Article  ADS  Google Scholar 

  48. Zhuang, R. et al. Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response. Nat. Photon. 13, 602–608 (2019).

    Article  ADS  Google Scholar 

  49. Boone, J. M. & Seibert, J. A. An accurate method for computer‐generating tungsten anode X‐ray spectra from 30 to 140 kV. Med. Phys. 24, 1661–1670 (1997).

    Article  Google Scholar 

  50. Meloni, S. et al. Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 7, 10334 (2016).

    Article  ADS  Google Scholar 

  51. Peng, J. et al. Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging. Matter 5, 2251–2264 (2022).

    Article  Google Scholar 

  52. Typical Dose from a Dental Radiological Procedure (IAEA); https://www.iaea.org/resources/rpop/health-professionals/dentistry/radiation-doses

  53. Song, Y. et al. Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors. Research 2020, 5958243 (2020).

    Article  ADS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  Google Scholar 

  56. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Z. Xiao and S. Geng for providing calculation data and helpful discussions. G.N. acknowledges support by the National Natural Science Foundation of China (U23A20359), the Innovation Project of Optics Valley Laboratory (OVL2023ZD002) and Shenzhen Science and Technology Program (SGDX20230116093205009). L.L. acknowledges support from the National Natural Science Foundation of China (22109057), the Natural Science Foundation of Jiangxi Province (20212BAB214021), the Science and Technology Project of Jiangxi Provincial Department of Education (GJJ200836) and the high-level talent research launch project of Jiangxi University of Technology (205200100505). H.-Y.Y. thanks the National Natural Science Foundation of China (22275075) and the Natural Science Foundation of Jiangxi Province (20204BCJ22015 and 20202ACBL203001) for support. Y.F. acknowledges financial support from the Science and Technology Project of Jiangxi Provincial Department of Education (GJJ210847). S.Y.L. acknowledges financial support from the Graduate Innovation Special Fund Project of Jiangxi Province (YC2022-S700).

Author information

Authors and Affiliations

Authors

Contributions

G.N. and L.L. conceived the idea and designed the experiments. G.N. and H.-Y.Y. supervised the work. H.-Y.Y. and Z.-J.W. synthesized and characterized the crystals. L.L. and S.-Y.L. carried out the device fabrication and characterizations. C.-L.F. and Y.F. conducted the resistivity and UV–vis measurements. Y.S. and S.Z. conducted the TOF measurements. M.-X.C. carried out the PL characterizations. H.-Y.S., Y.M. and Y.L. conducted the dark current drift measurements. L.L. and G.N. wrote the draft of the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Heng-Yun Ye or Guangda Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Gary Hodes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Notes 1–3 and Tables 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Liu, SY., Shi, Y. et al. Anti-perovskites with long carrier lifetime for ultralow dose and stable X-ray detection. Nat. Photon. 18, 990–997 (2024). https://doi.org/10.1038/s41566-024-01482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01482-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing