Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy

Abstract

In this study, we integrate a single-photon detector array into a confocal laser scanning microscope, enabling the combination of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. This unique combination delivers a twofold improvement in lateral localization accuracy for single-molecule localization microscopy (SMLM) and maintains its simplicity. Moreover, the addition of lifetime information from our confocal laser scanning microscope eliminates chromatic aberration, particularly crucial for achieving few-nanometre resolution in SMLM. Our approach, named fluorescence-lifetime image scanning microscopy SMLM, is demonstrated through direct stochastic optical reconstruction microscopy and DNA point accumulation for imaging in nanoscale topography experiments on fluorescently labelled cells, showcasing both resolution enhancement and fluorescence-lifetime multiplexing capabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: iSMLM principle.
Fig. 2: ISM setup and calibration.
Fig. 3: Single-labelling iSMLM dSTORM results.
Fig. 4: dSTORM-based FL-iSMLM multiplexing.
Fig. 5: DNA-PAINT-based FL-iSMLM multiplexing.

Similar content being viewed by others

Data availability

All the raw data are available via GitLab at https://gitlab.gwdg.de/igregor/single-molecule-localization-microscopy-with-image-scanning-microscopy40.

Code availability

Every scrip and code to process the raw data is available via GitLab at https://gitlab.gwdg.de/igregor/single-molecule-localization-microscopy-with-image-scanning-microscopy40.

References

  1. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  ADS  Google Scholar 

  2. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  ADS  Google Scholar 

  3. Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  Google Scholar 

  4. Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).

    Article  ADS  Google Scholar 

  5. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  Google Scholar 

  6. Reinhardt, S. C. et al. Ångström-resolution fluorescence microscopy. Nature 617, 711–716 (2023).

    Article  ADS  Google Scholar 

  7. Thiele, J. C. et al. Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano 14, 14190–14200 (2020).

    Article  Google Scholar 

  8. Oleksiievets, N. et al. Single-molecule fluorescence lifetime imaging using wide-field and confocal-laser scanning microscopy: a comparative analysis. Nano Lett. 22, 6454–6461 (2022).

    Article  ADS  Google Scholar 

  9. Chizhik, A. I., Rother, J., Gregor, I., Janshoff, A. & Enderlein, J. Metal-induced energy transfer for live cell nanoscopy. Nat. Photon. 8, 124–127 (2014).

    Article  ADS  Google Scholar 

  10. Isbaner, S. et al. Axial colocalization of single molecules with nanometer accuracy using metal-induced energy transfer. Nano Lett. 18, 2616–2622 (2018).

    Article  ADS  Google Scholar 

  11. Thiele, J. C. et al. Isotropic three-dimensional dual-color super-resolution microscopy with metal-induced energy transfer. Sci. Adv. 8, 2506 (2022).

    Article  Google Scholar 

  12. Sheppard, C. R. Super-resolution in confocal imaging. Optik 80, 53–54 (1988).

    Google Scholar 

  13. Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104, 198101 (2010).

    Article  ADS  Google Scholar 

  14. Sheppard, C. J., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38, 2889–2892 (2013).

    Article  ADS  Google Scholar 

  15. Sheppard, C. J., Castello, M., Tortarolo, G., Vicidomini, G. & Diaspro, A. Image formation in image scanning microscopy, including the case of two-photon excitation. J. Opt. Soc. Am. A 34, 1339–1350 (2017).

    Article  ADS  Google Scholar 

  16. Sheppard, C. J. et al. Pixel reassignment in image scanning microscopy: a re-evaluation. J. Opt. Soc. Am. A 37, 154–162 (2020).

    Article  ADS  Google Scholar 

  17. Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article  Google Scholar 

  18. Reymond, L. et al. SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt. Express 27, 24578–24590 (2019).

    Article  ADS  Google Scholar 

  19. Reymond, L., Huser, T., Ruprecht, V. & Wieser, S. Modulation-enhanced localization microscopy. J. Phys.: Photonics 2, 041001 (2020).

    ADS  Google Scholar 

  20. Cnossen, J. et al. Localization microscopy at doubled precision with patterned illumination. Nat. Methods 17, 59–63 (2020).

    Article  Google Scholar 

  21. Sun, Y. et al. Modulated illumination localization microscopy-enabled sub-10 nm resolution. J. Innov. Opt. Health Sci. 15, 2230004 (2022).

    Article  Google Scholar 

  22. Kalisvaart, D. et al. Precision in iterative modulation enhanced single-molecule localization microscopy. Biophys. J. 121, 2279–2289 (2022).

    Article  ADS  Google Scholar 

  23. York, A. G. et al. Instant super-resolution imaging in live cells and embryos via analog image processing. Nat. Methods 10, 1122–1126 (2013).

    Article  Google Scholar 

  24. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc. Natl Acad. Sci. USA 110, 21000–21005 (2013).

    Article  ADS  Google Scholar 

  25. Tenne, R. et al. Super-resolution enhancement by quantum image scanning microscopy. Nat. Photon. 13, 116–122 (2019).

    Article  ADS  Google Scholar 

  26. Rossman, U. et al. Rapid quantum image scanning microscopy by joint sparse reconstruction. Optica 6, 1290–1296 (2019).

    Article  ADS  Google Scholar 

  27. Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution flim. Nat. Methods 16, 175–178 (2019).

    Article  Google Scholar 

  28. Buttafava, M. et al. SPAD-based asynchronous-readout array detectors for image-scanning microscopy. Optica 7, 755–765 (2020).

    Article  ADS  Google Scholar 

  29. Koho, S. V. et al. Two-photon image-scanning microscopy with SPAD array and blind image reconstruction. Biomed. Opt. Express 11, 2905–2924 (2020).

    Article  Google Scholar 

  30. Slenders, E. et al. Cooled SPAD array detector for low light-dose fluorescence laser scanning microscopy. Biophys. Rep. 1, 100025 (2021).

    Google Scholar 

  31. Roth, S., Sheppard, C. J., Wicker, K. & Heintzmann, R. Optical photon reassignment microscopy (OPRA). Opt. Nano. 2, 5 (2013).

    Article  Google Scholar 

  32. Roth, S., Sheppard, C. J. & Heintzmann, R. Superconcentration of light: circumventing the classical limit to achievable irradiance. Opt. Lett. 41, 2109–2112 (2016).

    Article  ADS  Google Scholar 

  33. Fazel, M. et al. Fluorescence microscopy: a statistics-optics perspective. Rev. Mod. Phys. 96, 025003 (2024).

    Article  ADS  Google Scholar 

  34. Stallinga, S., Radmacher, N., Delon, A. & Enderlein, J. Optimal transfer functions for bandwidth-limited imaging. Phys. Rev. Research 4, 023003 (2022).

    Article  ADS  Google Scholar 

  35. Smith, C. S. et al. Structured illumination microscopy with noise-controlled image reconstructions. Nat. Methods 18, 821–828 (2021).

    Article  Google Scholar 

  36. Holden, S. J., Uphoff, S. & Kapanidis, A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279–280 (2011).

    Article  Google Scholar 

  37. Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  Google Scholar 

  38. Stein, S. C. & Thiart, J. TrackNTrace: a simple and extendable open-source framework for developing single-molecule localization and tracking algorithms. Sci. Rep. 6, 37947 (2016).

    Article  ADS  Google Scholar 

  39. Linde, S. Single-molecule localization microscopy analysis with ImageJ. J. Phys. D: Appl. Phys. 52, 203002 (2019).

    Article  ADS  Google Scholar 

  40. Stein, S., Thiart, J., Thiele, J. C. & Radmacher, N. Single-molecule localization microscopy with image scanning microscopy. GitLab https://gitlab.gwdg.de/igregor/single-molecule-localization-microscopy-with-image-scanning-microscopy (2023).

  41. Rieger, B. & Stallinga, S. The lateral and axial localization uncertainty in super-resolution light microscopy. ChemPhysChem 15, 664–670 (2014).

    Article  Google Scholar 

  42. Zwettler, F. et al. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (ex-SMLM). Nat. Commun. 11, 3388 (2020).

    Article  ADS  Google Scholar 

  43. Thiele, J. C., Nevskyi, O., Helmerich, D. A., Sauer, M. & Enderlein, J. Advanced data analysis for fluorescence-lifetime single-molecule localization microscopy. Front. Bioinform. 1, 740281 (2021).

    Article  Google Scholar 

  44. Wegel, E. et al. Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: a practical comparison. Sci. Rep. 6, 27290 (2016).

    Article  ADS  Google Scholar 

  45. Oleksiievets, N. et al. Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Commun. Biol. 5, 38 (2022).

    Article  Google Scholar 

  46. Kalisvaart, D., Hung, S.-T. & Smith, C. S. Quantifying the minimum localization uncertainty of image scanning localization microscopy. Biophys. Rep. 4, 100143 (2024).

  47. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Article  Google Scholar 

  48. Truckenbrodt, S. et al. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep. 19, 45836 (2018).

    Article  Google Scholar 

  49. Tortarolo, G. et al. Focus image scanning microscopy for sharp and gentle super-resolved microscopy. Nat. Commun. 13, 7723 (2022).

    Article  ADS  Google Scholar 

  50. Slenders, E. & Vicidomini, G. ISM-FLUX: MINFLUX with an array detector. Phys. Rev. Research 5, 023033 (2023).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N.R., J.E. and S.O.R. acknowledge financial support from the Bundesministerium für Bildung und Forschung (BMBF), Germany, via project NG-FLIM (project nos. 13N15327 and 13N15328). J.I.G. acknowledges financial support from the European Union’s Horizon 2021 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101062508 (project name: SOADOPP). J.E. and J.I.G. acknowledge financial support from the DFG through Germany’s Excellence Strategy EXC 2067/1-390729940. J.E. and O.N. thank the European Research Council (ERC) for financial support via project ‘smMIET’ (grant agreement no. 884488) under the European Union’s Horizon 2020 research and innovation programme. We thank A. Chizhik for providing us with the illustration of our ISM microscope setup, as well as for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.R. and O.N. built the setup, performed the microscopy imaging and analysed the data. J.I.G. prepared the samples, performed the microscopy imaging and analysed the data. J.C.T. helped with the implementation of the ISM plug-in for the analysis software. I.G. helped with the setup and experiments. J.E. conceived the idea, worked out the theoretical framework and helped with the data analysis. N.R., O.N., J.I.G., S.O.R. and J.E. wrote the manuscript and did the final editing.

Corresponding author

Correspondence to Jörg Enderlein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Liangyi Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radmacher, N., Nevskyi, O., Gallea, J.I. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01481-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing