Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams

Abstract

Plasma-wakefield-based acceleration technology has the potential to revolutionize the field of particle accelerators. By providing acceleration gradients orders of magnitude larger than conventional radiofrequency particle accelerators, this technology allows accelerators to be reduced to the centimetre length scale. It also provides a new compact approach for driving free-electron lasers, a valuable source of high-brilliance ultrashort coherent radiation within the infrared to X-ray spectral range for the study of subatomic matter, ultrafast dynamics of complex systems and X-ray nonlinear optics, among other applications. Several laboratories around the world are working on the realization of these new light sources, exploring different configurations for the plasma wakefield driver beam, plasma stage design and operational regime. This Review describes the operating principles of plasma accelerators, an overview of recent experimental milestones for plasma-driven free-electron lasers in self-amplified spontaneous emission and seeded configurations, and highlights the remaining major challenges in the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General overview of the beam energy and energy spread performance of plasma-based and conventional accelerators.
Fig. 2: Schematic of a plasma-based FEL.
Fig. 3: Experimental set-up of the SASE LWFA-based FEL at SIOM-CAS.
Fig. 4: Experimental set-up of the seeded LWFA-based FEL at COXINEL-HZDR.
Fig. 5: Experimental set-up of the SASE and seeded PWFA-based FEL at SPARC_LAB.

Similar content being viewed by others

References

  1. Madey, J. M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    Article  ADS  Google Scholar 

  2. Ackermann, W. A. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  3. Allaria, E. et al. Two-stage seeded soft-X-ray free-electron laser. Nat. Photon. 7, 913–918 (2013).

    Article  ADS  Google Scholar 

  4. Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  5. Mirian, N. S. et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat. Photon. 15, 523–529 (2021).

    Article  ADS  Google Scholar 

  6. Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).

    Article  ADS  Google Scholar 

  7. Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon.12, 215–220 (2018).

    Article  ADS  Google Scholar 

  8. Meyer, M. in FELs of Europe: Whitebook on Science with Free Electron Lasers (eds Patterson, B. D. & van Daalen, M.) 8–19 (Paul Scherrer Institut, 2016).

  9. Burnett, A. et al. UK XFEL Science Case (UKRI, 2020).

  10. Pellegrini, C. X-ray free-electron lasers: from dreams to reality. Phys. Scripta 2016, 014004 (2017).

    Google Scholar 

  11. Allaria, E. et al. Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

    Article  ADS  Google Scholar 

  12. Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).

    Article  ADS  Google Scholar 

  13. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  14. Yu, C. et al. Ultrahigh brilliance quasi-monochromatic meV γ-rays based on self-synchronized all-optical compton scattering. Sci. Rep. 6, 29518 (2016).

    Article  ADS  Google Scholar 

  15. Yan, W. et al. High-order multiphoton Thomson scattering. Nat. Photon. 11, 514–520 (2017).

    Article  Google Scholar 

  16. Schroeder, C., Esarey, E., Geddes, C., Benedetti, C. & Leemans, W. Physics considerations for laser-plasma linear colliders. Phys. Rev. Spec. Top. Accel. Beams 13, 101301 (2010).

    Article  ADS  Google Scholar 

  17. Gschwendtner, E. & Muggli, P. Plasma wakefield accelerators. Nat. Rev. Phys. 1, 246–248 (2019).

    Article  Google Scholar 

  18. Nakajima, K. Towards a table-top free-electron laser. Nat. Phys. 4, 92–93 (2008).

    Article  Google Scholar 

  19. Couprie, M.-E., Loulergue, A., Labat, M., Lehe, R. & Malka, V. Towards a free electron laser based on laser plasma accelerators. J. Phys. B 47, 234001 (2014).

    Article  ADS  Google Scholar 

  20. Emma, C. et al. Free electron lasers driven by plasma accelerators: status and near-term prospects. High Power Laser Sci. Eng. 9, e57 (2021).

    Article  Google Scholar 

  21. Downer, M. C., Zgadzaj, R., Debus, A., Schramm, U. & Kaluza, M. C. Diagnostics for plasma-based electron accelerators. Rev. Mod. Phys. 90, 035002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  22. Manahan, G. G. et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8, 15705 (2017).

    Article  ADS  Google Scholar 

  23. Wang, W. et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016).

    Article  ADS  Google Scholar 

  24. André, T. et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).

    Article  ADS  Google Scholar 

  25. Deng, A. et al. Generation and acceleration of electron bunches from a plasma photocathode. Nat. Phys. 15, 1156–1160 (2019).

    Article  Google Scholar 

  26. Lindstrom, C. A. et al. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator. Phys. Rev. Lett. 126, 014801 (2021).

    Article  ADS  Google Scholar 

  27. Kirchen, M. et al. Optimal beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 126, 174801 (2021).

    Article  ADS  Google Scholar 

  28. Mangles, S. P. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).

    Article  ADS  Google Scholar 

  29. Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).

    Article  ADS  Google Scholar 

  30. Van Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802 (2015).

    Article  ADS  Google Scholar 

  31. Huang, Z., Ding, Y. & Schroeder, C. B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 204801 (2012).

    Article  ADS  Google Scholar 

  32. Couperus, J. et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487 (2017).

    Article  ADS  Google Scholar 

  33. Li, Y. et al. Generation of 20 kA electron beam from a laser wakefield accelerator. Phys. Plasmas 24, 023108 (2017).

    Article  ADS  Google Scholar 

  34. Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).

    Article  Google Scholar 

  35. Fuchs, M. et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826–829 (2009).

    Article  Google Scholar 

  36. Maier, A. R. et al. Water-window X-ray pulses from a laser-plasma driven undulator. Sci. Rep. 10, 5634 (2020).

    Article  ADS  Google Scholar 

  37. Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).

    Article  ADS  Google Scholar 

  38. Pompili, R. et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 605, 659–662 (2022).

    Article  ADS  Google Scholar 

  39. Gorobtsov, O. Y. et al. Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nat. Commun. 9, 4498 (2018).

    Article  ADS  Google Scholar 

  40. Galletti, M. et al. Stable operation of a free-electron laser driven by a plasma accelerator. Phys. Rev. Lett. 129, 234801 (2022).

    Article  ADS  Google Scholar 

  41. Labat, M. et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photon. 17, 150–156 (2023).

    Article  ADS  Google Scholar 

  42. Geddes, C., Toth, C., Van Tilborg, J. & Esarey, E. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).

    Article  ADS  Google Scholar 

  43. Pukhov, A. & Meyer-ter Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).

    Article  ADS  Google Scholar 

  44. Habib, A. et al. Attosecond-angstrom free-electron-laser towards the cold beam limit. Nat. Commun. 14, 1054 (2023).

    Article  ADS  Google Scholar 

  45. Di Mitri, S. On the importance of electron beam brightness in high gain free electron lasers. Photonics 2, 317–341 (2015).

    Article  Google Scholar 

  46. Giannessi, L. A step closer to compact X-ray lasers. Nature 595, 496–497 (2021).

    Article  ADS  Google Scholar 

  47. Assmann, R. et al. EuPRAXIA conceptual design report. Eur. Phys. J. Spec. Top. 229, 3675–4284 (2020).

    Article  Google Scholar 

  48. McNeil, B. W. & Thompson, N. R. X-ray free-electron lasers. Nat. Photon. 4, 814–821 (2010).

    Article  ADS  Google Scholar 

  49. Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Optics Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  50. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical properties of radiation from VUV and X-ray free electron laser. Optics Commun. 148, 383–403 (1998).

    Article  ADS  Google Scholar 

  51. Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proc. Particle Accelerator Conference Vol. 1, 183–185 (IEEE, 1995).

  52. Couprie, M. E. Short wavelength free-electron laser sources. C. R. Acad. Sci. IV 1, 329–345 (2000).

    Google Scholar 

  53. Kondratenko, A. & Saldin, E. Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980).

    Google Scholar 

  54. Boscolo, I. & Stagno, V. The converter and the transverse optical klystron. Nuovo Cim. B 58, 267–285 (1980).

    Article  ADS  Google Scholar 

  55. Yu, L.-H. et al. High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000).

    Article  ADS  Google Scholar 

  56. Prince, K. et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016).

    Article  ADS  Google Scholar 

  57. Lutman, A. et al. Demonstration of single-crystal self-seeded two-color X-ray free-electron lasers. Phys. Rev. Lett. 113, 254801 (2014).

    Article  ADS  Google Scholar 

  58. Nam, I. et al. High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nat. Photon. 15, 435–441 (2021).

    Article  ADS  Google Scholar 

  59. Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).

    Article  ADS  Google Scholar 

  60. Hooker, S. M. Developments in laser-driven plasma accelerators. Nat. Photon. 7, 775–782 (2013).

    Article  ADS  Google Scholar 

  61. Malka, V. et al. Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447–453 (2008).

    Article  Google Scholar 

  62. Couprie, M. et al. An application of laser-plasma acceleration: towards a free-electron laser amplification. Plasma Phys. Control. Fusion 58, 034020 (2016).

    Article  ADS  Google Scholar 

  63. Gonsalves, A. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).

    Article  ADS  Google Scholar 

  64. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  65. Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).

    Article  ADS  Google Scholar 

  66. Albert, F. et al. 2020 roadmap on plasma accelerators. New J. Phys. 23, 031101 (2021).

    Article  ADS  Google Scholar 

  67. Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).

    Article  ADS  Google Scholar 

  68. Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).

    Article  ADS  Google Scholar 

  69. Joshi, C. et al. Plasma wakefield acceleration experiments at FACET II. Plasma Phys. Control. Fusion 60, 034001 (2018).

    Article  ADS  Google Scholar 

  70. D’Arcy, R. et al. FLASHForward: plasma wakefield accelerator science for high-average-power applications. Phil. Trans. R. Soc. A 377, 20180392 (2019).

    Article  ADS  Google Scholar 

  71. Hogan, M. J. et al. E-157: a 1.4-m-long plasma wakefield acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac. Phys. Plasmas 7, 2241–2248 (2000).

    Article  ADS  Google Scholar 

  72. Jaroszynski, D. A. & Vieux, G. Coherent radiation sources based on laser plasma accelerators. AIP Conf. Proc. 647, 902–914 (2002).

    Article  ADS  Google Scholar 

  73. Kurz, T. et al. Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams. Nat. Commun. 12, 2895 (2021).

    Article  ADS  Google Scholar 

  74. Couperus Cabadağ, J. P. et al. Gas-dynamic density downramp injection in a beam-driven plasma wakefield accelerator. Phys. Rev. Res. 3, L042005 (2021).

    Article  Google Scholar 

  75. Foerster, F. M. et al. Stable and high-quality electron beams from staged laser and plasma wakefield accelerators. Phys. Rev. X 12, 041016 (2022).

    Google Scholar 

  76. Aniculaesei, C. et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter Radiat. Extremes 9, 014001 (2023).

    Article  Google Scholar 

  77. Götzfried, J. et al. Physics of high-charge electron beams in laser-plasma wakefields. Phys. Rev. X 10, 041015 (2020).

    Google Scholar 

  78. Rosenzweig, J. B., Cline, D. B., Cole, B., Figueroa, H. & Gai, W. Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98–101 (1988).

    Article  ADS  Google Scholar 

  79. Ferran Pousa, A., Martinez de la Ossa, A., Brinkmann, R. & Assmann, R. W. Compact multistage plasma-based accelerator design for correlated energy spread compensation. Phys. Rev. Lett. 123, 054801 (2019).

    Article  ADS  Google Scholar 

  80. Pompili, R. et al. Energy spread minimization in a beam-driven plasma wakefield accelerator. Nat. Phys. 17, 499–503 (2021).

    Article  Google Scholar 

  81. Ke, L. et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Phys. Rev. Lett. 126, 214801 (2021).

    Article  ADS  Google Scholar 

  82. Plateau, G. et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy. Phys. Rev. Lett. 109, 064802 (2012).

    Article  ADS  Google Scholar 

  83. Shpakov, V. et al. First emittance measurement of the beam-driven plasma wakefield accelerated electron beam. Phys. Rev. Accel. Beams 24, 051301 (2021).

    Article  ADS  Google Scholar 

  84. Maier, A. R. et al. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X 10, 031039 (2020).

    Google Scholar 

  85. Buck, A. et al. Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011).

    Article  Google Scholar 

  86. Lundh, O. et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7, 219–222 (2011).

    Article  Google Scholar 

  87. Litos, M. et al. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58, 034017 (2016).

    Article  ADS  Google Scholar 

  88. Barber, S. et al. Measured emittance dependence on the injection method in laser plasma accelerators. Phys. Rev. Lett. 119, 104801 (2017).

    Article  ADS  Google Scholar 

  89. Koehler, A. et al. Restoring betatron phase coherence in a beam-loaded laser-wakefield accelerator. Phys. Rev. Accel. Beams 24, 091302 (2021).

    Article  ADS  Google Scholar 

  90. Jalas, S. et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett. 126, 104801 (2021).

    Article  ADS  Google Scholar 

  91. Wu, F. et al. Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Optics Laser Technol. 131, 106453 (2020).

    Article  Google Scholar 

  92. Ghaith, A. et al. Tunable high spatio-spectral purity undulator radiation from a transported laser plasma accelerated electron beam. Sci. Rep. 9, 19020 (2019).

    Article  ADS  Google Scholar 

  93. Schramm, U. et al. First results with the novel petawatt laser acceleration facility in Dresden. J. Phys. Conf. Ser. 874, 012028 (2017).

    Article  Google Scholar 

  94. Irman, A. et al. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection. Plasma Phys. Control. Fusion 60, 044015 (2018).

    Article  ADS  Google Scholar 

  95. Loulergue, A. et al. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 023028 (2015).

    Article  ADS  Google Scholar 

  96. Ferrario, M. et al. SPARC_LAB present and future. Nucl. Instrum. Methods B 309, 183–188 (2013).

    Article  ADS  Google Scholar 

  97. Biagioni, A. et al. Gas-filled capillary-discharge stabilization for plasma-based accelerators by means of a laser pulse. Plasma Phys. Control. Fusion 63, 115013 (2021).

    ADS  Google Scholar 

  98. Serafini, L. & Ferrario, M. Velocity bunching in photo-injectors. AIP Conf. Proc. 581, 87–106 (2001).

  99. Pompili, R. et al. Compact and tunable focusing device for plasma wakefield acceleration. Rev. Sci. Instrum. 89, 033302 (2018).

    Article  ADS  Google Scholar 

  100. Rosenzweig, J. B. et al. Generation of ultra-short, high brightness electron beams for single-spike SASE FEL operation. Nucl. Instrum. Methods Phys. Res. A 593, 39–44 (2008).

    Article  ADS  Google Scholar 

  101. Gorobtsov, O. Y. et al. Statistical properties of a free-electron laser revealed by Hanbury Brown–Twiss interferometry. Phys. Rev. A 95, 023843 (2017).

    Article  ADS  Google Scholar 

  102. Xu, X. et al. Generation of ultrahigh-brightness pre-bunched beams from a plasma cathode for X-ray free-electron lasers. Nat. Commun. 13, 3364 (2022).

    Article  ADS  Google Scholar 

  103. Rosenzweig, J. et al. An ultra-compact X-ray free-electron laser. New J. Phys. 22, 093067 (2020).

    Article  ADS  Google Scholar 

  104. Emma, C. et al. Terawatt attosecond X-ray source driven by a plasma accelerator. APL Photon. 6, 076107 (2021).

    Article  ADS  Google Scholar 

  105. Feng, K. et al. Coherent X-ray source generation with off-resonance laser modulation. Opt. Express 26, 19067–19079 (2018).

    Article  ADS  Google Scholar 

  106. Gilljohann, M. F. et al. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X 9, 011046 (2019).

    Google Scholar 

  107. Schöbel, S. et al. Effect of driver charge on wakefield characteristics in a plasma accelerator probed by femtosecond shadowgraphy. New J. Phys. 24, 083034 (2022).

    Article  ADS  Google Scholar 

  108. Zarini, O. et al. Multioctave high-dynamic range optical spectrometer for single-pulse, longitudinal characterization of ultrashort electron bunches. Phys. Rev. Accel. Beams 25, 012801 (2022).

    Article  ADS  Google Scholar 

  109. D’Arcy, R. et al. Recovery time of a plasma-wakefield accelerator. Nature 603, 58–62 (2022).

    Article  ADS  Google Scholar 

  110. Bostedt, C. et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016).

    Article  ADS  Google Scholar 

  111. Kluge, T. et al. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter. Phys. Plasmas 21, 033110 (2014).

    Article  ADS  Google Scholar 

  112. van Tilborg, J. et al. Free-electron lasers driven by laser plasma accelerators. AIP Conf. Proc. 1812, 020002 (2017).

    Article  Google Scholar 

  113. Delbos, N. et al. LUX–a laser–plasma driven undulator beamline. Nucl. Instrum. Methods Phys. Res. A 909, 318–322 (2018).

    Article  ADS  Google Scholar 

  114. Kruchinin, K. O. et al. Development of a new generation FEL based on LWFA at ELI Beamlines. In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IV Proceedings Vol. 11039 (eds Korn, G. & Silva, L. O.) 110390R (SPIE, 2019).

  115. Hosokai, T. et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary. Opt. Lett. 25, 10–12 (2000).

    Article  ADS  Google Scholar 

  116. CLARA Conceptual Design Report (Science and Technology Facilities Council, 2013); https://www.astec.stfc.ac.uk/Pages/CLARA_CDRv2.pdf

  117. Xia, G. et al. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. Nucl. Instrum. Methods Phys. Res. A 829, 43–49 (2016).

    Article  ADS  Google Scholar 

  118. Ferrario, M. et al. EuPRAXIA@SPARC_LAB design study towards a compact FEL facility at LNF. Nucl. Instrum. Methods Phys. Res. A 909, 134–138 (2018).

    Article  ADS  Google Scholar 

  119. Rossbach, J., Schneider, J. R. & Wurth, W. 10 years of pioneering X-ray science at the free-electron laser FLASH at DESY. Phys. Rep. 808, 1–74 (2019).

    Article  ADS  Google Scholar 

  120. Ferran Pousa, A. Novel Concepts and Theoretical Studies for High-Quality Plasma-Based Accelerators. PhD thesis, Univ. Hamburg (2020).

  121. Kallos, E. et al. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches. Phys. Rev. Lett. 100, 074802 (2008).

    Article  ADS  Google Scholar 

  122. Gschwendtner, E. et al. The AWAKE Run 2 programme and beyond. Symmetry 14, 1680 (2022).

Download references

Acknowledgements

We acknowledge the first authors and co-authors of refs. 37,38,40,41. Several of the authors acknowledge funding support from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement numbers 101004730 (IFAST) and 101079773 (EuPRAXIA Preparatory Phase PP). W.W. acknowledges the CAS Project for Young Scientists in Basic Research (grant number YSBR060) and the National Natural Science Foundation of China (grant number 12105353).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the Review.

Corresponding author

Correspondence to M. Galletti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Bernhard Hidding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galletti, M., Assmann, R., Couprie, M.E. et al. Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams. Nat. Photon. 18, 780–791 (2024). https://doi.org/10.1038/s41566-024-01474-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01474-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing