Abstract
Plasma-wakefield-based acceleration technology has the potential to revolutionize the field of particle accelerators. By providing acceleration gradients orders of magnitude larger than conventional radiofrequency particle accelerators, this technology allows accelerators to be reduced to the centimetre length scale. It also provides a new compact approach for driving free-electron lasers, a valuable source of high-brilliance ultrashort coherent radiation within the infrared to X-ray spectral range for the study of subatomic matter, ultrafast dynamics of complex systems and X-ray nonlinear optics, among other applications. Several laboratories around the world are working on the realization of these new light sources, exploring different configurations for the plasma wakefield driver beam, plasma stage design and operational regime. This Review describes the operating principles of plasma accelerators, an overview of recent experimental milestones for plasma-driven free-electron lasers in self-amplified spontaneous emission and seeded configurations, and highlights the remaining major challenges in the field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Madey, J. M. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).
Ackermann, W. A. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photon. 1, 336–342 (2007).
Allaria, E. et al. Two-stage seeded soft-X-ray free-electron laser. Nat. Photon. 7, 913–918 (2013).
Emma, P. et al. First lasing and operation of an ångstrom-wavelength free-electron laser. Nat. Photon. 4, 641–647 (2010).
Mirian, N. S. et al. Generation and measurement of intense few-femtosecond superradiant extreme-ultraviolet free-electron laser pulses. Nat. Photon. 15, 523–529 (2021).
Huang, S. et al. Generating single-spike hard X-ray pulses with nonlinear bunch compression in free-electron lasers. Phys. Rev. Lett. 119, 154801 (2017).
Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon.12, 215–220 (2018).
Meyer, M. in FELs of Europe: Whitebook on Science with Free Electron Lasers (eds Patterson, B. D. & van Daalen, M.) 8–19 (Paul Scherrer Institut, 2016).
Burnett, A. et al. UK XFEL Science Case (UKRI, 2020).
Pellegrini, C. X-ray free-electron lasers: from dreams to reality. Phys. Scripta 2016, 014004 (2017).
Allaria, E. et al. Highly coherent and stable pulses from the Fermi seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).
Decking, W. et al. A MHz-repetition-rate hard X-ray free-electron laser driven by a superconducting linear accelerator. Nat. Photon. 14, 391–397 (2020).
Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979).
Yu, C. et al. Ultrahigh brilliance quasi-monochromatic meV γ-rays based on self-synchronized all-optical compton scattering. Sci. Rep. 6, 29518 (2016).
Yan, W. et al. High-order multiphoton Thomson scattering. Nat. Photon. 11, 514–520 (2017).
Schroeder, C., Esarey, E., Geddes, C., Benedetti, C. & Leemans, W. Physics considerations for laser-plasma linear colliders. Phys. Rev. Spec. Top. Accel. Beams 13, 101301 (2010).
Gschwendtner, E. & Muggli, P. Plasma wakefield accelerators. Nat. Rev. Phys. 1, 246–248 (2019).
Nakajima, K. Towards a table-top free-electron laser. Nat. Phys. 4, 92–93 (2008).
Couprie, M.-E., Loulergue, A., Labat, M., Lehe, R. & Malka, V. Towards a free electron laser based on laser plasma accelerators. J. Phys. B 47, 234001 (2014).
Emma, C. et al. Free electron lasers driven by plasma accelerators: status and near-term prospects. High Power Laser Sci. Eng. 9, e57 (2021).
Downer, M. C., Zgadzaj, R., Debus, A., Schramm, U. & Kaluza, M. C. Diagnostics for plasma-based electron accelerators. Rev. Mod. Phys. 90, 035002 (2018).
Manahan, G. G. et al. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams. Nat. Commun. 8, 15705 (2017).
Wang, W. et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801 (2016).
André, T. et al. Control of laser plasma accelerated electrons for light sources. Nat. Commun. 9, 1334 (2018).
Deng, A. et al. Generation and acceleration of electron bunches from a plasma photocathode. Nat. Phys. 15, 1156–1160 (2019).
Lindstrom, C. A. et al. Energy-spread preservation and high efficiency in a plasma-wakefield accelerator. Phys. Rev. Lett. 126, 014801 (2021).
Kirchen, M. et al. Optimal beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 126, 174801 (2021).
Mangles, S. P. et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535–538 (2004).
Faure, J. et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004).
Van Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802 (2015).
Huang, Z., Ding, Y. & Schroeder, C. B. Compact X-ray free-electron laser from a laser-plasma accelerator using a transverse-gradient undulator. Phys. Rev. Lett. 109, 204801 (2012).
Couperus, J. et al. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8, 487 (2017).
Li, Y. et al. Generation of 20 kA electron beam from a laser wakefield accelerator. Phys. Plasmas 24, 023108 (2017).
Schlenvoigt, H.-P. et al. A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130–133 (2008).
Fuchs, M. et al. Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826–829 (2009).
Maier, A. R. et al. Water-window X-ray pulses from a laser-plasma driven undulator. Sci. Rep. 10, 5634 (2020).
Wang, W. et al. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature 595, 516–520 (2021).
Pompili, R. et al. Free-electron lasing with compact beam-driven plasma wakefield accelerator. Nature 605, 659–662 (2022).
Gorobtsov, O. Y. et al. Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nat. Commun. 9, 4498 (2018).
Galletti, M. et al. Stable operation of a free-electron laser driven by a plasma accelerator. Phys. Rev. Lett. 129, 234801 (2022).
Labat, M. et al. Seeded free-electron laser driven by a compact laser plasma accelerator. Nat. Photon. 17, 150–156 (2023).
Geddes, C., Toth, C., Van Tilborg, J. & Esarey, E. et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004).
Pukhov, A. & Meyer-ter Vehn, J. Laser wake field acceleration: the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002).
Habib, A. et al. Attosecond-angstrom free-electron-laser towards the cold beam limit. Nat. Commun. 14, 1054 (2023).
Di Mitri, S. On the importance of electron beam brightness in high gain free electron lasers. Photonics 2, 317–341 (2015).
Giannessi, L. A step closer to compact X-ray lasers. Nature 595, 496–497 (2021).
Assmann, R. et al. EuPRAXIA conceptual design report. Eur. Phys. J. Spec. Top. 229, 3675–4284 (2020).
McNeil, B. W. & Thompson, N. R. X-ray free-electron lasers. Nat. Photon. 4, 814–821 (2010).
Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Optics Commun. 50, 373–378 (1984).
Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical properties of radiation from VUV and X-ray free electron laser. Optics Commun. 148, 383–403 (1998).
Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proc. Particle Accelerator Conference Vol. 1, 183–185 (IEEE, 1995).
Couprie, M. E. Short wavelength free-electron laser sources. C. R. Acad. Sci. IV 1, 329–345 (2000).
Kondratenko, A. & Saldin, E. Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207–216 (1980).
Boscolo, I. & Stagno, V. The converter and the transverse optical klystron. Nuovo Cim. B 58, 267–285 (1980).
Yu, L.-H. et al. High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000).
Prince, K. et al. Coherent control with a short-wavelength free-electron laser. Nat. Photon. 10, 176–179 (2016).
Lutman, A. et al. Demonstration of single-crystal self-seeded two-color X-ray free-electron lasers. Phys. Rev. Lett. 113, 254801 (2014).
Nam, I. et al. High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nat. Photon. 15, 435–441 (2021).
Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).
Hooker, S. M. Developments in laser-driven plasma accelerators. Nat. Photon. 7, 775–782 (2013).
Malka, V. et al. Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4, 447–453 (2008).
Couprie, M. et al. An application of laser-plasma acceleration: towards a free-electron laser amplification. Plasma Phys. Control. Fusion 58, 034020 (2016).
Gonsalves, A. et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122, 084801 (2019).
Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).
Esarey, E., Schroeder, C. B. & Leemans, W. P. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009).
Albert, F. et al. 2020 roadmap on plasma accelerators. New J. Phys. 23, 031101 (2021).
Blumenfeld, I. et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007).
Litos, M. et al. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator. Nature 515, 92–95 (2014).
Joshi, C. et al. Plasma wakefield acceleration experiments at FACET II. Plasma Phys. Control. Fusion 60, 034001 (2018).
D’Arcy, R. et al. FLASHForward: plasma wakefield accelerator science for high-average-power applications. Phil. Trans. R. Soc. A 377, 20180392 (2019).
Hogan, M. J. et al. E-157: a 1.4-m-long plasma wakefield acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac. Phys. Plasmas 7, 2241–2248 (2000).
Jaroszynski, D. A. & Vieux, G. Coherent radiation sources based on laser plasma accelerators. AIP Conf. Proc. 647, 902–914 (2002).
Kurz, T. et al. Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams. Nat. Commun. 12, 2895 (2021).
Couperus Cabadağ, J. P. et al. Gas-dynamic density downramp injection in a beam-driven plasma wakefield accelerator. Phys. Rev. Res. 3, L042005 (2021).
Foerster, F. M. et al. Stable and high-quality electron beams from staged laser and plasma wakefield accelerators. Phys. Rev. X 12, 041016 (2022).
Aniculaesei, C. et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator. Matter Radiat. Extremes 9, 014001 (2023).
Götzfried, J. et al. Physics of high-charge electron beams in laser-plasma wakefields. Phys. Rev. X 10, 041015 (2020).
Rosenzweig, J. B., Cline, D. B., Cole, B., Figueroa, H. & Gai, W. Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98–101 (1988).
Ferran Pousa, A., Martinez de la Ossa, A., Brinkmann, R. & Assmann, R. W. Compact multistage plasma-based accelerator design for correlated energy spread compensation. Phys. Rev. Lett. 123, 054801 (2019).
Pompili, R. et al. Energy spread minimization in a beam-driven plasma wakefield accelerator. Nat. Phys. 17, 499–503 (2021).
Ke, L. et al. Near-GeV electron beams at a few per-mille level from a laser wakefield accelerator via density-tailored plasma. Phys. Rev. Lett. 126, 214801 (2021).
Plateau, G. et al. Low-emittance electron bunches from a laser-plasma accelerator measured using single-shot X-ray spectroscopy. Phys. Rev. Lett. 109, 064802 (2012).
Shpakov, V. et al. First emittance measurement of the beam-driven plasma wakefield accelerated electron beam. Phys. Rev. Accel. Beams 24, 051301 (2021).
Maier, A. R. et al. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X 10, 031039 (2020).
Buck, A. et al. Real-time observation of laser-driven electron acceleration. Nat. Phys. 7, 543–548 (2011).
Lundh, O. et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys. 7, 219–222 (2011).
Litos, M. et al. 9 GeV energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58, 034017 (2016).
Barber, S. et al. Measured emittance dependence on the injection method in laser plasma accelerators. Phys. Rev. Lett. 119, 104801 (2017).
Koehler, A. et al. Restoring betatron phase coherence in a beam-loaded laser-wakefield accelerator. Phys. Rev. Accel. Beams 24, 091302 (2021).
Jalas, S. et al. Bayesian optimization of a laser-plasma accelerator. Phys. Rev. Lett. 126, 104801 (2021).
Wu, F. et al. Performance improvement of a 200TW/1Hz Ti:sapphire laser for laser wakefield electron accelerator. Optics Laser Technol. 131, 106453 (2020).
Ghaith, A. et al. Tunable high spatio-spectral purity undulator radiation from a transported laser plasma accelerated electron beam. Sci. Rep. 9, 19020 (2019).
Schramm, U. et al. First results with the novel petawatt laser acceleration facility in Dresden. J. Phys. Conf. Ser. 874, 012028 (2017).
Irman, A. et al. Improved performance of laser wakefield acceleration by tailored self-truncated ionization injection. Plasma Phys. Control. Fusion 60, 044015 (2018).
Loulergue, A. et al. Beam manipulation for compact laser wakefield accelerator based free-electron lasers. New J. Phys. 17, 023028 (2015).
Ferrario, M. et al. SPARC_LAB present and future. Nucl. Instrum. Methods B 309, 183–188 (2013).
Biagioni, A. et al. Gas-filled capillary-discharge stabilization for plasma-based accelerators by means of a laser pulse. Plasma Phys. Control. Fusion 63, 115013 (2021).
Serafini, L. & Ferrario, M. Velocity bunching in photo-injectors. AIP Conf. Proc. 581, 87–106 (2001).
Pompili, R. et al. Compact and tunable focusing device for plasma wakefield acceleration. Rev. Sci. Instrum. 89, 033302 (2018).
Rosenzweig, J. B. et al. Generation of ultra-short, high brightness electron beams for single-spike SASE FEL operation. Nucl. Instrum. Methods Phys. Res. A 593, 39–44 (2008).
Gorobtsov, O. Y. et al. Statistical properties of a free-electron laser revealed by Hanbury Brown–Twiss interferometry. Phys. Rev. A 95, 023843 (2017).
Xu, X. et al. Generation of ultrahigh-brightness pre-bunched beams from a plasma cathode for X-ray free-electron lasers. Nat. Commun. 13, 3364 (2022).
Rosenzweig, J. et al. An ultra-compact X-ray free-electron laser. New J. Phys. 22, 093067 (2020).
Emma, C. et al. Terawatt attosecond X-ray source driven by a plasma accelerator. APL Photon. 6, 076107 (2021).
Feng, K. et al. Coherent X-ray source generation with off-resonance laser modulation. Opt. Express 26, 19067–19079 (2018).
Gilljohann, M. F. et al. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X 9, 011046 (2019).
Schöbel, S. et al. Effect of driver charge on wakefield characteristics in a plasma accelerator probed by femtosecond shadowgraphy. New J. Phys. 24, 083034 (2022).
Zarini, O. et al. Multioctave high-dynamic range optical spectrometer for single-pulse, longitudinal characterization of ultrashort electron bunches. Phys. Rev. Accel. Beams 25, 012801 (2022).
D’Arcy, R. et al. Recovery time of a plasma-wakefield accelerator. Nature 603, 58–62 (2022).
Bostedt, C. et al. Linac coherent light source: the first five years. Rev. Mod. Phys. 88, 015007 (2016).
Kluge, T. et al. Using X-ray free-electron lasers for probing of complex interaction dynamics of ultra-intense lasers with solid matter. Phys. Plasmas 21, 033110 (2014).
van Tilborg, J. et al. Free-electron lasers driven by laser plasma accelerators. AIP Conf. Proc. 1812, 020002 (2017).
Delbos, N. et al. LUX–a laser–plasma driven undulator beamline. Nucl. Instrum. Methods Phys. Res. A 909, 318–322 (2018).
Kruchinin, K. O. et al. Development of a new generation FEL based on LWFA at ELI Beamlines. In Research Using Extreme Light: Entering New Frontiers with Petawatt-Class Lasers IV Proceedings Vol. 11039 (eds Korn, G. & Silva, L. O.) 110390R (SPIE, 2019).
Hosokai, T. et al. Optical guidance of terrawatt laser pulses by the implosion phase of a fast Z-pinch discharge in a gas-filled capillary. Opt. Lett. 25, 10–12 (2000).
CLARA Conceptual Design Report (Science and Technology Facilities Council, 2013); https://www.astec.stfc.ac.uk/Pages/CLARA_CDRv2.pdf
Xia, G. et al. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. Nucl. Instrum. Methods Phys. Res. A 829, 43–49 (2016).
Ferrario, M. et al. EuPRAXIA@SPARC_LAB design study towards a compact FEL facility at LNF. Nucl. Instrum. Methods Phys. Res. A 909, 134–138 (2018).
Rossbach, J., Schneider, J. R. & Wurth, W. 10 years of pioneering X-ray science at the free-electron laser FLASH at DESY. Phys. Rep. 808, 1–74 (2019).
Ferran Pousa, A. Novel Concepts and Theoretical Studies for High-Quality Plasma-Based Accelerators. PhD thesis, Univ. Hamburg (2020).
Kallos, E. et al. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches. Phys. Rev. Lett. 100, 074802 (2008).
Gschwendtner, E. et al. The AWAKE Run 2 programme and beyond. Symmetry 14, 1680 (2022).
Acknowledgements
We acknowledge the first authors and co-authors of refs. 37,38,40,41. Several of the authors acknowledge funding support from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement numbers 101004730 (IFAST) and 101079773 (EuPRAXIA Preparatory Phase PP). W.W. acknowledges the CAS Project for Young Scientists in Basic Research (grant number YSBR060) and the National Natural Science Foundation of China (grant number 12105353).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the Review.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Bernhard Hidding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Galletti, M., Assmann, R., Couprie, M.E. et al. Prospects for free-electron lasers powered by plasma-wakefield-accelerated beams. Nat. Photon. 18, 780–791 (2024). https://doi.org/10.1038/s41566-024-01474-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-024-01474-3