Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomic optical antennas in solids

Abstract

A resonantly excited atomic optical dipole simultaneously generates propagating (far) and evanescent (near) electromagnetic fields. The near-field component diverges in the limit of decreasing distance, indicating an optical antenna with the potential for enormous near-field intensity enhancement. In principle, any atomic optical dipole in a solid can serve as an optical antenna; however, most of them suffer from environmentally induced decoherence that largely mitigates field enhancement. Here we demonstrate that germanium vacancy centres in diamond—optically coherent atom-like dipoles in a solid—are exemplary antennas. We measure up to million-fold optical intensity enhancement in the near-field of resonantly excited germanium vacancies. In addition to the rich applications already developed for conventional nanoantennas, atomic antennas in the solid state promise to yield interesting new applications in spectroscopy, sensing and quantum science. As one concrete example, we use germanium vacancy antennas to detect and control the charge state of nearby carbon vacancies and generate measurable fluorescence from individual vacancies through Förster resonance energy transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The GeV as an antenna.
Fig. 2: GeV antennas sense, manipulate and optically excite proximal vacancies.
Fig. 3: The ZPL splitting is inversely correlated with pumping threshold power.
Fig. 4: Comparison with off-resonant excitation reveals field enhancement.
Fig. 5: The antenna effect of a GeV compared with a silver nanosphere.

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Taminiau, T., Stefani, F., Segerink, F. B. & Van Hulst, N. Optical antennas direct single-molecule emission. Nat. Photon. 2, 234–237 (2008).

    Article  Google Scholar 

  2. Liu, N., Tang, M. L., Hentschel, M., Giessen, H. & Alivisatos, A. P. Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011).

    Article  ADS  Google Scholar 

  3. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013).

    Article  ADS  Google Scholar 

  4. Le Ru, E. C. & Etchegoin, P. G. Single-molecule surface-enhanced raman spectroscopy. Ann. Rev. Phys. Chem. 63, 65–87 (2012).

    Article  ADS  Google Scholar 

  5. Swearer, D. F. et al. Heterometallic antenna–reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

  6. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).

  7. Knall, E. N. et al. Efficient source of shaped single photons based on an integrated diamond nanophotonic system. Phys. Rev. Lett. 129, 053603 (2022).

    Article  ADS  Google Scholar 

  8. Hepp, C. et al. Electronic structure of the silicon vacancy color center in diamond. Phys. Rev. Lett. 112, 036405 (2014).

    Article  ADS  Google Scholar 

  9. Jantzen, U. et al. Nanodiamonds carrying silicon-vacancy quantum emitters with almost lifetime-limited linewidths. New J. Phys. 18, 073036 (2016).

    Article  ADS  Google Scholar 

  10. Bhaskar, M. K. et al. Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide. Phys. Rev. Lett. 118, 223603 (2017).

    Article  ADS  Google Scholar 

  11. Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).

    Article  ADS  Google Scholar 

  12. Siyushev, P. et al. Optical and microwave control of germanium-vacancy center spins in diamond. Phys. Rev. B 96, 081201 (2017).

    Article  ADS  Google Scholar 

  13. Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

    Article  ADS  Google Scholar 

  14. Guo, X. et al. Tunable and transferable diamond membranes for integrated quantum technologies. Nano Lett. 21, 10392–10399 (2021).

    Article  ADS  Google Scholar 

  15. Miller, O. D. et al. Fundamental limits to optical response in absorptive systems. Opt. Express 24, 3329–3364 (2016).

    Article  ADS  Google Scholar 

  16. Christiansen, R. E., Michon, J., Benzaouia, M., Sigmund, O. & Johnson, S. G. Inverse design of nanoparticles for enhanced raman scattering. Opt. Express 28, 4444–4462 (2020).

    Article  ADS  Google Scholar 

  17. Maity, S. et al. Spectral alignment of single-photon emitters in diamond using strain gradient. Phys. Rev. Appl. 10, 024050 (2018).

    Article  ADS  Google Scholar 

  18. Bergamin, M. et al. in Quantum Information and Measurement Th2C–6 (Optical Society of America, 2021).

  19. Subedi, S., Fedorov, V., Mirov, S. & Markham, M. Spectroscopy of gr1 centers in synthetic diamonds. Opt. Mater. Express 11, 757–765 (2021).

    Article  ADS  Google Scholar 

  20. Baldwin Jr, J. A. Electron paramagnetic resonance investigation of the vacancy in diamond. Phys. Rev. Lett. 10, 220 (1963).

    Article  ADS  Google Scholar 

  21. Davies, G. Charge states of the vacancy in diamond. Nature 269, 498–500 (1977).

    Article  ADS  Google Scholar 

  22. Heremans, F., Fuchs, G., Wang, C., Hanson, R. & Awschalom, D. Generation and transport of photoexcited electrons in single-crystal diamond. Appl. Phys. Lett. 94, 152102 (2009).

  23. Wolfowicz, G. et al. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

    Article  ADS  Google Scholar 

  24. Ohno, K. et al. Engineering shallow spins in diamond with nitrogen delta-doping. Appl. Phys. Lett. 101, 082413 (2012).

    Article  ADS  Google Scholar 

  25. Rugar, A. E. et al. Generation of tin-vacancy centers in diamond via shallow ion implantation and subsequent diamond overgrowth. Nano Lett. 20, 1614–1619 (2020).

    Article  ADS  Google Scholar 

  26. Tisler, J. et al. Highly efficient fret from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5, 7893–7898 (2011).

    Article  Google Scholar 

  27. Nelz, R. et al. Near-field energy transfer between a luminescent 2D material and color centers in diamond. Adv. Quant. Technol. 3, 1900088 (2020).

    Article  Google Scholar 

  28. Kong, X., Nir, E., Hamadani, K. & Weiss, S. Photobleaching pathways in single-molecule FRET experiments. J. Am. Chem. Soc. 129, 4643–4654 (2007).

  29. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    Article  Google Scholar 

  30. Novotny, L. & Van Hulst, N. Antennas for light. Nat. Photon. 5, 83–90 (2011).

    Article  ADS  Google Scholar 

  31. Michon, J., Benzaouia, M., Yao, W., Miller, O. D. & Johnson, S. G. Limits to surface-enhanced Raman scattering near arbitrary-shape scatterers. Opt. Express 27, 35189–35202 (2019).

    Article  ADS  Google Scholar 

  32. Mie, G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Ann. Phys. 330, 377–445 (1908).

    Article  Google Scholar 

  33. Neves, A. A. R., Cesar, C. L., Garbos, M. K., Euser, T. G. & Moreira, W. L. Expansion of arbitrary electromagnetic fields in terms of vector spherical wave functions. Opt. Express 24, 2370–2382 (2016).

    Article  ADS  Google Scholar 

  34. Chen, Y. et al. Ultralow-power cryogenic thermometry based on optical-transition broadening of a two-level system in diamond. ACS Photon. 10, 2481–2487 (2023).

  35. Feng, L. et al. Silver-coated elevated bowtie nanoantenna arrays: improving the near-field enhancement of gap cavities for highly active surface-enhanced Raman scattering. Nano Res. 8, 3715–3724 (2015).

    Article  Google Scholar 

  36. Fischer, H. & Martin, O. J. F. Engineering the optical response of plasmonic nanoantennas. Opt. Express 16, 9144–9154 (2008).

    Article  ADS  Google Scholar 

  37. Li, K., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    Article  ADS  Google Scholar 

  38. Dengchao, H. et al. Metal–insulator–metal nanoislands with enhanced local fields for SERS-based detection. ACS Appl. Nano Mater. 18, 16856–16863 (2023).

  39. Michaels, A. M., Jiang, J. & Brus, L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B 104, 11965–11971 (2000).

    Article  Google Scholar 

  40. Wang, P. et al. Transform-limited photon emission from a lead-vacancy center in diamond above 10 K. Phys. Rev. Lett. 132, 073601 (2023).

  41. Smith, J. M., Meynell, S. A., Bleszynski Jayich, A. C. & Meijer, J. Colour centre generation in diamond for quantum technologies. Nanophotonics 8, 1889–1906 (2019).

    Article  Google Scholar 

  42. McLellan, C. A. et al. Patterned formation of highly coherent nitrogen-vacancy centers using a focused electron irradiation technique. Nano Lett. 16, 2450–2454 (2016).

    Article  ADS  Google Scholar 

  43. Janitz, E., Bhaskar, M. K. & Childress, L. Cavity quantum electrodynamics with color centers in diamond. Optica 7, 1232–1252 (2020).

    Article  ADS  Google Scholar 

  44. Gottscholl, A. et al. Room temperature coherent control of spin defects in hexagonal boron nitride. Sci. Adv. 7, eabf3630 (2021).

    Article  ADS  Google Scholar 

  45. Anderson, C. P. et al. Five-second coherence of a single spin with single-shot readout in silicon carbide. Sci. Adv. 8, eabm5912 (2022).

    Article  ADS  Google Scholar 

  46. Zhong, T., Kindem, J. M., Miyazono, E. & Faraon, A. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals. Nat. Commun. 6, 8206 (2015).

    Article  ADS  Google Scholar 

  47. Bayliss, S. et al. Enhancing spin coherence in optically addressable molecular qubits through host-matrix control. Phys. Rev. X 12, 031028 (2022).

    Google Scholar 

  48. Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535 (1989).

    Article  ADS  Google Scholar 

  49. Diez, D. M., Barr, C. D. & Cetinkaya-Rundel, M. OpenIntro Statistics (OpenIntro Boston, 2012).

  50. Fan, X., Zheng, W. & Singh, D. J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 3, e179–e179 (2014).

    Article  ADS  Google Scholar 

  51. Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Opt. Mater. 7, 1800783 (2019).

  52. Aharonovich, I. et al. Homoepitaxial growth of single crystal diamond membranes for quantum information processing. Adv. Mater. 24, OP54–OP59 (2012).

    Article  Google Scholar 

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  54. Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  55. Giannozzi, P. et al. Quantum espresso toward the exascale. J. Chem. Phys. 152, 154105 (2020).

  56. Hamann, D. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 085117 (2013).

  57. Schlipf, M. & Gygi, F. Optimization algorithm for the generation of oncv pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from Q-NEXT, supported by the US Department of Energy, Office of Science, National Quantum Information Science Research Centers. Z.L. acknowledges support from the Kadanoff-Rice fellowship (grant no. NSF DMR-2011854). Diamond growth-related efforts were supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division (N.D.). The membrane bonding work is supported by NSF award no. AM-2240399. This work made use of the Pritzker Nanofabrication Facility (Soft and Hybrid Nanotechnology Experimental Resource, NSF award no. ECCS-2025633) and the Materials Research Science and Engineering Center (NSF award no. DMR-2011854) at the University of Chicago. F.A. acknowledges support from the ICFOstepstone—PhD Programme funded by the European Union’s Horizon 2020 Research and Innovation programme under Marie Skłodowska-Curie grant agreement no. 713729. D.C. acknowledges support from the European Union’s Horizon 2020 Research and Innovation programme, under European Research Council grant agreement no. 101002107 (NEWSPIN); the Government of Spain (Severo Ochoa grant no. CEX2019-000910-S); Generalitat de Catalunya (CERCA program and AGAUR project no. 2021 SGR 01442); and Fundació Cellex and Fundació Mir-Puig. First-principles calculations were performed in the MICCoM center—a computational materials science centre funded by the US Department of Energy, Office of Basic Energy Sciences, and used resources of the University of Chicago Research Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. and X.G. performed the experiments and analysed the data. Y.J. and A.B. performed first-principles calculations under the supervision of G.G. F.A. performed near-field calculations under the supervision of D.C. D.D.A., N.D. and F.J.H. provided the materials. A.A.H. conceived and supervised the project. All authors discussed the results and contributed to the paper.

Corresponding author

Correspondence to Alexander A. High.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Guo, X., Jin, Y. et al. Atomic optical antennas in solids. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41566-024-01456-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing