Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A fully hybrid integrated erbium-based laser

Abstract

Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-noise fibre lasers to the chip-scale form factor and enable large-volume applications. Although major progress has been made on integrated lasers based on silicon photonics with III–V gain media, realizing low-noise integrated erbium-based lasers has, however, remained unachievable. Recent advances in photonic-integrated-circuit-based high-power erbium-doped amplifiers make a new class of rare-earth-ion-based lasers possible. Here we demonstrate a fully integrated erbium laser that achieves 50 Hz intrinsic linewidth, high output power up to 17 mW, low intensity noise and integration of a III–V pump laser, approaching the performance of fibre lasers and state-of-the-art semiconductor extended-cavity lasers. The laser circuit is based on an erbium-ion-implanted ultralow-loss silicon nitride photonic integrated circuit, with an intracavity microring-based Vernier filter that enables >40 nm wavelength tunability within the optical C and L bands and attains a 70 dB side-mode suppression ratio. This new class of low-noise, tunable integrated laser could find applications in LiDAR, microwave photonics, optical frequency synthesis and free-space communications, with wavelength extendibility using different rare-earth ion species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A hybrid integrated Er:Si3N4 laser.
Fig. 2: A hybrid integrated Er:Si3N4 Vernier laser operated at single-mode lasing.
Fig. 3: Demonstration of wideband tuning of the laser wavelength.
Fig. 4: Laser noise properties and the fully hybrid integration of an EDWL.

Similar content being viewed by others

Data availability

The data used to produce the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.10781807 (ref. 69).

Code availability

The code used to produce the plots within this paper is available via Zenodo at https://doi.org/10.5281/zenodo.10781807 (ref. 69).

References

  1. Barnes, W. L., Morkel, P. R., Reekie, L. & Payne, D. N. High-quantum-efficiency Er3+ fiber lasers pumped at 980 nm. Opt. Lett. 14, 1002–1004 (1989).

    Article  ADS  Google Scholar 

  2. Suzuki, K., Kimura, Y. & Nakazawa, M. An 8 mW cw Er3+-doped fiber laser pumped by 1.46 μm InGaAsP laser diodes. Jpn. J. Appl. Phys. 28, L1000–L1002 (1989).

  3. Chow, J. et al. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Photon. Technol. Lett. 8, 60–62 (1996).

    Article  ADS  Google Scholar 

  4. Soriano-Amat, M. et al. Time-expanded phase-sensitive optical time-domain reflectometry. Light Sci. Appl. 10, 51 (2021).

    Article  ADS  Google Scholar 

  5. Zadok, A. et al. Random-access distributed fiber sensing. Laser Photon. Rev. 6, L1–L5 (2012).

    Article  Google Scholar 

  6. Dix-Matthews, B. P. et al. Point-to-point stabilized optical frequency transfer with active optics. Nat. Commun. 12, 515 (2021).

    Article  ADS  Google Scholar 

  7. Xu, C. & Wise, F. W. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photon. 7, 875–882 (2013).

    Article  ADS  Google Scholar 

  8. Nilsson, J. High power fiber lasers. In Conference on Lasers and Electro-Optics 2010 Optics InfoBase Conference Papers CTuC1 (Optica Publishing Group, 2010).

  9. Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012).

    Article  ADS  Google Scholar 

  10. Siegman, A. E. Lasers (Univ. Science Books, 1986).

  11. Streifer, W., Scifres, D. & Burnham, R. Analysis of diode laser properties. IEEE J. Quantum Electron. 18, 1918–1929 (1982).

  12. Bradley, J. & Pollnau, M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon. Rev. 5, 368–403 (2011).

    Article  ADS  Google Scholar 

  13. Rönn, J. et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun. 10, 432 (2019).

    Article  ADS  Google Scholar 

  14. Mu, J., Dijkstra, M., Korterik, J., Offerhaus, H. & García-Blanco, S. M. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photon. Res. 8, 1634–1641 (2020).

  15. Frankis, H. C. et al. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain. Photon. Res. 8, 127–134 (2020).

  16. Yan, Y. C., Faber, A. J., de Waal, H., Kik, P. G. & Polman, A. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm. Appl. Phys. Lett. 71, 2922–2924 (1997).

  17. Fan, W. et al. Demonstration of optical gain at 1550 nm in an Er3+-Yb3+ co-doped phosphate planar waveguide under commercial and convenient LED pumping. Opt. Express 29, 11372–11385 (2021).

  18. Cai, M. et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Topics Quantum Electron. 28, 1–8 (2022).

    Article  ADS  Google Scholar 

  19. Luo, Q., Bo, F., Kong, Y., Zhang, G. & Xu, J. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photon. 5(3), 034002 (2023).

  20. Yin, D. et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett. 46, 2127–2130 (2021).

    Article  ADS  Google Scholar 

  21. Chen, Z. et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 46, 1161–1164 (2021).

    Article  ADS  Google Scholar 

  22. Wang, X., Zhou, P., He, Y. & Zhou, Z. Erbium silicate compound optical waveguide amplifier and laser. Opt. Mater. Express 8, 2970–2990 (2018).

    Article  ADS  Google Scholar 

  23. Sun, J. et al. C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. Opt. Lett. 38, 1760–1762 (2013).

    Article  ADS  Google Scholar 

  24. Bastard, L. Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications. Opt. Eng. 42, 2800 (2003).

    Article  ADS  Google Scholar 

  25. Bernhardi, E. et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Opt. Lett. 35, 2394–2396 (2010).

  26. Li, N. et al. Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt. Express 25, 13705– 13713 (2017).

  27. Belt, M. et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Opt. Lett. 38, 4825–4828 (2013).

    Article  ADS  Google Scholar 

  28. Xiao, Z., Wu, K., Cai, M., Li, T. & Chen, J. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett. 46, 4128–4131 (2021).

  29. Snitzer, E. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (ed Digonnet, M. J.) (CRC Press, 2001).

  30. Fu, S. et al. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 34, A49–A62 (2017).

    Article  Google Scholar 

  31. Kringlebotn, J. T., Archambault, J.-L., Reekie, L. & Payne, D. N. Er3+:Yb3+-codoped fiber distributed-feedback laser. Opt. Lett. 19, 2101–2103 (1994).

  32. Cranch, G. A. & Miller, G. A. Fundamental frequency noise properties of extended cavity erbium fiber lasers. Opt. Lett. 36, 906–908 (2011).

    Article  ADS  Google Scholar 

  33. Tran, M. A. et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Topics Quantum Electron. 26, 1–14 (2019).

    Article  ADS  Google Scholar 

  34. de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).

    Article  ADS  Google Scholar 

  35. Fan, Y. et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 28, 21713–21728 (2020).

  36. Morton, P. A. et al. Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100Hz Lorentzian linewidth. J. Lightwave Technol. 40, 1802–1809 (2022).

    Article  ADS  Google Scholar 

  37. Guo, Y. et al. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photonics 7, 066101 (2022).

  38. Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).

    Article  ADS  Google Scholar 

  39. Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).

    Article  ADS  Google Scholar 

  40. Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    Article  ADS  Google Scholar 

  41. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  Google Scholar 

  42. Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).

    Article  ADS  Google Scholar 

  43. Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).

    Article  ADS  Google Scholar 

  44. Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  45. Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7, eabi8150 (2021).

    Article  ADS  Google Scholar 

  46. Gyger, F. et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett. 124, 013902 (2020).

    Article  ADS  Google Scholar 

  47. Botter, R. et al. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits. Sci. Adv. 8, eabq2196 (2022).

    Article  ADS  Google Scholar 

  48. Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    Article  ADS  Google Scholar 

  49. Yamashita, S. & Hsu, K. Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry-P‚rot lasers by use of self-injection locking. Opt. Lett. 23, 1200–1202 (1998).

    Article  ADS  Google Scholar 

  50. Dang, L. et al. Spectrum extreme purification and modulation of DBR fiber laser with weak distributed feedback. J. Lightwave Technol. 41, 5437–5444 (2023).

    Article  ADS  Google Scholar 

  51. Pfeiffer, M. H., Liu, J., Geiselmann, M. & Kippenberg, T. J. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl. 7, 024026 (2017).

    Article  ADS  Google Scholar 

  52. Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett. 44, 4737–4740 (2019).

    Article  ADS  Google Scholar 

  53. Ji, X. et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys. 5, 84 (2022).

    Article  Google Scholar 

  54. Pintus, P. et al. Demonstration of large mode-hop-free tuning in narrow-linewidth heterogeneous integrated laser. J. Lightwave Technol. 41, 6723–6734 (2023).

    Article  ADS  Google Scholar 

  55. Guan, H. et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt. Express 26, 7920–7933 (2018).

    Article  ADS  Google Scholar 

  56. Lihachev, G. et al. Frequency agile photonic integrated external cavity laser. Preprint at https://arxiv.org/abs/2303.00425 (2023).

  57. Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).

  58. Richter, L., Mandelberg, H., Kruger, M. & McGrath, P. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE J. Quantum Electron. 22, 2070–2074 (1986).

  59. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  ADS  Google Scholar 

  60. Di Domenico, G., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).

  61. Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).

    Article  ADS  Google Scholar 

  62. Liu, Y., Zhang, Z., Burla, M. & Eggleton, B. J. 11-GHz-bandwidth photonic radar using MHz electronics. Laser Photon. Rev. 16, 2100549 (2022).

    Article  ADS  Google Scholar 

  63. Zhang, Z., Liu, Y., Stephens, T. & Eggleton, B. J. Photonic radar for contactless vital sign detection. Nat. Photon. 17, 791–797 (2023).

  64. Lumentum, Lumentum Micro-Integrable Tunable Laser Assembly (μITLA) - TL5400.

  65. Della Corte, F. G., Cocorullo, G., Iodice, M. & Rendina, I. Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm. Appl. Phys. Lett. 77, 1614–1616 (2000).

  66. Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2023).

    Article  ADS  Google Scholar 

  67. Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).

    Article  ADS  Google Scholar 

  68. Polman, A., Jacobson, D. C., Eaglesham, D. J., Kistler, R. C. & Poate, J. M. Optical doping of waveguide materials by MeV Er implantation. J. Appl. Phys. 70, 3778–3784 (1991).

    Article  ADS  Google Scholar 

  69. Liu, Y. et al. ‘A fully hybrid integrated erbium-based laser’ dataset and code. Zenodo https://doi.org/10.5281/zenodo.10781807 (2024).

Download references

Acknowledgements

Silicon nitride samples were fabricated in the EPFL Center of MicroNanoTechnology (CMi). This work was supported by the Air Force Office of Scientific Research (AFOSR) under award no. FA9550-19-1-0250, and by contract W911NF2120248 (NINJA) from the Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO). Y.L. further acknowledges support from the Marie Skłodowska-Curie IF grant no. 898594 (CompADC) and the SNSF under grant no. 221540 (BRIDGE PoC). G.L. acknowledges support from the SNSF under grant no. 214626.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the idea and concept. Y.L. and Z.Q. performed the experiments. Y.L. carried out the data analysis and simulations. Y.L. and Z.Q. designed the Si3N4 waveguide laser chips. X.J., G.L. and J.R. provided experimental support. A.B. and A.V. designed and performed the device packaging. R.N.W., Z.Q. and X.J. fabricated the passive Si3N4 samples. Y.L. wrote the manuscript with assistance from Z.Q. and input from all co-authors. T.J.K. supervised the project.

Corresponding authors

Correspondence to Yang Liu or Tobias J. Kippenberg.

Ethics declarations

Competing interests

T.J.K. is a co-founder and shareholder of LiGenTec SA, a start-up company offering Si3N4 photonic integrated circuits as a foundry service. T.J.K. is a founder and shareholder of EDWATEC SA, a start-up company offering Er-doped photonic integrated circuits. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Jonathan Bradley and Arnan Mitchell for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qiu, Z., Ji, X. et al. A fully hybrid integrated erbium-based laser. Nat. Photon. 18, 829–835 (2024). https://doi.org/10.1038/s41566-024-01454-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01454-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing