Abstract
Erbium-doped fibre lasers exhibit high coherence and low noise as required for fibre-optic sensing, gyroscopes, LiDAR and optical frequency metrology. Endowing erbium-based gain in photonic integrated circuits can provide a basis for miniaturizing low-noise fibre lasers to the chip-scale form factor and enable large-volume applications. Although major progress has been made on integrated lasers based on silicon photonics with III–V gain media, realizing low-noise integrated erbium-based lasers has, however, remained unachievable. Recent advances in photonic-integrated-circuit-based high-power erbium-doped amplifiers make a new class of rare-earth-ion-based lasers possible. Here we demonstrate a fully integrated erbium laser that achieves 50 Hz intrinsic linewidth, high output power up to 17 mW, low intensity noise and integration of a III–V pump laser, approaching the performance of fibre lasers and state-of-the-art semiconductor extended-cavity lasers. The laser circuit is based on an erbium-ion-implanted ultralow-loss silicon nitride photonic integrated circuit, with an intracavity microring-based Vernier filter that enables >40 nm wavelength tunability within the optical C and L bands and attains a 70 dB side-mode suppression ratio. This new class of low-noise, tunable integrated laser could find applications in LiDAR, microwave photonics, optical frequency synthesis and free-space communications, with wavelength extendibility using different rare-earth ion species.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data used to produce the plots within this paper are available via Zenodo at https://doi.org/10.5281/zenodo.10781807 (ref. 69).
Code availability
The code used to produce the plots within this paper is available via Zenodo at https://doi.org/10.5281/zenodo.10781807 (ref. 69).
References
Barnes, W. L., Morkel, P. R., Reekie, L. & Payne, D. N. High-quantum-efficiency Er3+ fiber lasers pumped at 980 nm. Opt. Lett. 14, 1002–1004 (1989).
Suzuki, K., Kimura, Y. & Nakazawa, M. An 8 mW cw Er3+-doped fiber laser pumped by 1.46 μm InGaAsP laser diodes. Jpn. J. Appl. Phys. 28, L1000–L1002 (1989).
Chow, J. et al. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Photon. Technol. Lett. 8, 60–62 (1996).
Soriano-Amat, M. et al. Time-expanded phase-sensitive optical time-domain reflectometry. Light Sci. Appl. 10, 51 (2021).
Zadok, A. et al. Random-access distributed fiber sensing. Laser Photon. Rev. 6, L1–L5 (2012).
Dix-Matthews, B. P. et al. Point-to-point stabilized optical frequency transfer with active optics. Nat. Commun. 12, 515 (2021).
Xu, C. & Wise, F. W. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photon. 7, 875–882 (2013).
Nilsson, J. High power fiber lasers. In Conference on Lasers and Electro-Optics 2010 Optics InfoBase Conference Papers CTuC1 (Optica Publishing Group, 2010).
Jackson, S. D. Towards high-power mid-infrared emission from a fibre laser. Nat. Photon. 6, 423–431 (2012).
Siegman, A. E. Lasers (Univ. Science Books, 1986).
Streifer, W., Scifres, D. & Burnham, R. Analysis of diode laser properties. IEEE J. Quantum Electron. 18, 1918–1929 (1982).
Bradley, J. & Pollnau, M. Erbium-doped integrated waveguide amplifiers and lasers. Laser Photon. Rev. 5, 368–403 (2011).
Rönn, J. et al. Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides. Nat. Commun. 10, 432 (2019).
Mu, J., Dijkstra, M., Korterik, J., Offerhaus, H. & García-Blanco, S. M. High-gain waveguide amplifiers in Si3N4 technology via double-layer monolithic integration. Photon. Res. 8, 1634–1641 (2020).
Frankis, H. C. et al. Erbium-doped TeO2-coated Si3N4 waveguide amplifiers with 5 dB net gain. Photon. Res. 8, 127–134 (2020).
Yan, Y. C., Faber, A. J., de Waal, H., Kik, P. G. & Polman, A. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm. Appl. Phys. Lett. 71, 2922–2924 (1997).
Fan, W. et al. Demonstration of optical gain at 1550 nm in an Er3+-Yb3+ co-doped phosphate planar waveguide under commercial and convenient LED pumping. Opt. Express 29, 11372–11385 (2021).
Cai, M. et al. Erbium-doped lithium niobate thin film waveguide amplifier with 16 dB internal net gain. IEEE J. Sel. Topics Quantum Electron. 28, 1–8 (2022).
Luo, Q., Bo, F., Kong, Y., Zhang, G. & Xu, J. Advances in lithium niobate thin-film lasers and amplifiers: a review. Adv. Photon. 5(3), 034002 (2023).
Yin, D. et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator. Opt. Lett. 46, 2127–2130 (2021).
Chen, Z. et al. Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. Opt. Lett. 46, 1161–1164 (2021).
Wang, X., Zhou, P., He, Y. & Zhou, Z. Erbium silicate compound optical waveguide amplifier and laser. Opt. Mater. Express 8, 2970–2990 (2018).
Sun, J. et al. C- and L-band erbium-doped waveguide lasers with wafer-scale silicon nitride cavities. Opt. Lett. 38, 1760–1762 (2013).
Bastard, L. Glass integrated optics ultranarrow linewidth distributed feedback laser matrix for dense wavelength division multiplexing applications. Opt. Eng. 42, 2800 (2003).
Bernhardi, E. et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon. Opt. Lett. 35, 2394–2396 (2010).
Li, N. et al. Ultra-narrow-linewidth Al2O3:Er3+ lasers with a wavelength-insensitive waveguide design on a wafer-scale silicon nitride platform. Opt. Express 25, 13705– 13713 (2017).
Belt, M. et al. Arrayed narrow linewidth erbium-doped waveguide-distributed feedback lasers on an ultra-low-loss silicon-nitride platform. Opt. Lett. 38, 4825–4828 (2013).
Xiao, Z., Wu, K., Cai, M., Li, T. & Chen, J. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett. 46, 4128–4131 (2021).
Snitzer, E. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded (ed Digonnet, M. J.) (CRC Press, 2001).
Fu, S. et al. Review of recent progress on single-frequency fiber lasers. J. Opt. Soc. Am. B 34, A49–A62 (2017).
Kringlebotn, J. T., Archambault, J.-L., Reekie, L. & Payne, D. N. Er3+:Yb3+-codoped fiber distributed-feedback laser. Opt. Lett. 19, 2101–2103 (1994).
Cranch, G. A. & Miller, G. A. Fundamental frequency noise properties of extended cavity erbium fiber lasers. Opt. Lett. 36, 906–908 (2011).
Tran, M. A. et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Topics Quantum Electron. 26, 1–14 (2019).
de Beeck, C. O. et al. III/V-on-lithium niobate amplifiers and lasers. Optica 8, 1288–1289 (2021).
Fan, Y. et al. Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth. Opt. Express 28, 21713–21728 (2020).
Morton, P. A. et al. Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100Hz Lorentzian linewidth. J. Lightwave Technol. 40, 1802–1809 (2022).
Guo, Y. et al. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photonics 7, 066101 (2022).
Lihachev, G. et al. Low-noise frequency-agile photonic integrated lasers for coherent ranging. Nat. Commun. 13, 3522 (2022).
Xiang, C. et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 6650 (2021).
Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).
Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).
Liu, Y. et al. A photonic integrated circuit-based erbium-doped amplifier. Science 376, 1309–1313 (2022).
Liu, J. et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun. 12, 2236 (2021).
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).
Ye, Z. et al. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv. 7, eabi8150 (2021).
Gyger, F. et al. Observation of stimulated Brillouin scattering in silicon nitride integrated waveguides. Phys. Rev. Lett. 124, 013902 (2020).
Botter, R. et al. Guided-acoustic stimulated Brillouin scattering in silicon nitride photonic circuits. Sci. Adv. 8, eabq2196 (2022).
Pfeiffer, M. H. P. et al. Photonic Damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).
Yamashita, S. & Hsu, K. Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry-P‚rot lasers by use of self-injection locking. Opt. Lett. 23, 1200–1202 (1998).
Dang, L. et al. Spectrum extreme purification and modulation of DBR fiber laser with weak distributed feedback. J. Lightwave Technol. 41, 5437–5444 (2023).
Pfeiffer, M. H., Liu, J., Geiselmann, M. & Kippenberg, T. J. Coupling ideality of integrated planar high-Q microresonators. Phys. Rev. Appl. 7, 024026 (2017).
Moille, G. et al. Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Opt. Lett. 44, 4737–4740 (2019).
Ji, X. et al. Compact, spatial-mode-interaction-free, ultralow-loss, nonlinear photonic integrated circuits. Commun. Phys. 5, 84 (2022).
Pintus, P. et al. Demonstration of large mode-hop-free tuning in narrow-linewidth heterogeneous integrated laser. J. Lightwave Technol. 41, 6723–6734 (2023).
Guan, H. et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt. Express 26, 7920–7933 (2018).
Lihachev, G. et al. Frequency agile photonic integrated external cavity laser. Preprint at https://arxiv.org/abs/2303.00425 (2023).
Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15, 70–73 (1967).
Richter, L., Mandelberg, H., Kruger, M. & McGrath, P. Linewidth determination from self-heterodyne measurements with subcoherence delay times. IEEE J. Quantum Electron. 22, 2070–2074 (1986).
Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).
Di Domenico, G., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).
Kim, I. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021).
Liu, Y., Zhang, Z., Burla, M. & Eggleton, B. J. 11-GHz-bandwidth photonic radar using MHz electronics. Laser Photon. Rev. 16, 2100549 (2022).
Zhang, Z., Liu, Y., Stephens, T. & Eggleton, B. J. Photonic radar for contactless vital sign detection. Nat. Photon. 17, 791–797 (2023).
Lumentum, Lumentum Micro-Integrable Tunable Laser Assembly (μITLA) - TL5400.
Della Corte, F. G., Cocorullo, G., Iodice, M. & Rendina, I. Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm. Appl. Phys. Lett. 77, 1614–1616 (2000).
Churaev, M. et al. A heterogeneously integrated lithium niobate-on-silicon nitride photonic platform. Nat. Commun. 14, 3499 (2023).
Liu, J. et al. Monolithic piezoelectric control of soliton microcombs. Nature 583, 385–390 (2020).
Polman, A., Jacobson, D. C., Eaglesham, D. J., Kistler, R. C. & Poate, J. M. Optical doping of waveguide materials by MeV Er implantation. J. Appl. Phys. 70, 3778–3784 (1991).
Liu, Y. et al. ‘A fully hybrid integrated erbium-based laser’ dataset and code. Zenodo https://doi.org/10.5281/zenodo.10781807 (2024).
Acknowledgements
Silicon nitride samples were fabricated in the EPFL Center of MicroNanoTechnology (CMi). This work was supported by the Air Force Office of Scientific Research (AFOSR) under award no. FA9550-19-1-0250, and by contract W911NF2120248 (NINJA) from the Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO). Y.L. further acknowledges support from the Marie Skłodowska-Curie IF grant no. 898594 (CompADC) and the SNSF under grant no. 221540 (BRIDGE PoC). G.L. acknowledges support from the SNSF under grant no. 214626.
Author information
Authors and Affiliations
Contributions
Y.L. conceived the idea and concept. Y.L. and Z.Q. performed the experiments. Y.L. carried out the data analysis and simulations. Y.L. and Z.Q. designed the Si3N4 waveguide laser chips. X.J., G.L. and J.R. provided experimental support. A.B. and A.V. designed and performed the device packaging. R.N.W., Z.Q. and X.J. fabricated the passive Si3N4 samples. Y.L. wrote the manuscript with assistance from Z.Q. and input from all co-authors. T.J.K. supervised the project.
Corresponding authors
Ethics declarations
Competing interests
T.J.K. is a co-founder and shareholder of LiGenTec SA, a start-up company offering Si3N4 photonic integrated circuits as a foundry service. T.J.K. is a founder and shareholder of EDWATEC SA, a start-up company offering Er-doped photonic integrated circuits. The other authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Jonathan Bradley and Arnan Mitchell for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–15 and Tables 1–3.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Liu, Y., Qiu, Z., Ji, X. et al. A fully hybrid integrated erbium-based laser. Nat. Photon. 18, 829–835 (2024). https://doi.org/10.1038/s41566-024-01454-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-024-01454-7