Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Attosecond core-level absorption spectroscopy reveals the electronic and nuclear dynamics of molecular ring opening

Abstract

We show that attosecond core-level spectroscopy is a powerful tool for investigating molecular dynamics due to its combined attosecond temporal resolution and the broad coherent spectrum that allows deciphering the signatures of nuclear and electronic motion through their different energetic signatures. The method reveals that the correlated real-time electronic and nuclear wavepacket dynamics and non-adiabatic transitions across conical intersections identify electronic and nuclear coherences and directly register symmetry changes in the X-ray absorption spectrum. We demonstrate the method’s efficacy to unveil the entire time history of the ring-opening dynamics of furan. The investigation establishes attosecond core-level spectroscopy as a potent method to investigate the real-time dynamics of photochemical reaction pathways in molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energetic evolution of furan.
Fig. 2: Carbon K-edge XANES of furan.
Fig. 3: Electronic and vibrational coherences.
Fig. 4: Simulated electronic and nuclear dynamics.

Similar content being viewed by others

Data availability

All data that support the plots and findings of this study are available from the corresponding author upon request.

Code availability

Information about the codes and scripts is available via Zenodo at https://doi.org/10.5281/zenodo.10575861 (ref. 59) and via GitHub at https://github.com/ziechys/SharcAnalysis.

References

  1. Domcke, W. & Stock, G. Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time. Adv. Chem. Phys. 100, 15 (1997).

    Google Scholar 

  2. Bersuker, I. B & Polinger, V. Z. Vibronic Interactions in Molecules and Crystals. Vol. 49 (Springer, 1990).

  3. Ruckenbauer, M., Mai, S., Marquetand, P. & González, L. Revealing deactivation pathways hidden in time-resolved photoelectron spectra. Sci. Rep. 6, 35522 (2016).

    Article  ADS  Google Scholar 

  4. Worth, G. A. & Cederbaum, L. S. BEYOND BORN-OPPENHEIMER: Molecular dynamics through a conical intersection. Annu. Rev. Phys. Chem. 55, 127–158 (2004).

    Article  ADS  Google Scholar 

  5. Yarkony, D. R. Diabolical conical intersections. Rev. Mod. Phys. 68, 985–1013 (1996).

    Article  ADS  Google Scholar 

  6. Polli, D. et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467, 440–443 (2010).

    Article  ADS  Google Scholar 

  7. Crespo-Hernández, C. E., Cohen, B., Hare, P. M. & Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104, 1977–2020 (2004).

    Article  Google Scholar 

  8. Sommer, E., Sio, A. D., Mena-Osteritz, E., Bäuerle, P. & Lienau, C. Two-dimensional electronic spectroscopy reveals ultrafast dynamics at a conical intersection in an organic photovoltaic material. EPJ Web Conf. 205, 06014 (2019).

    Article  Google Scholar 

  9. Borrego-Varillas, R. et al. Two-dimensional UV spectroscopy: a new insight into the structure and dynamics of biomolecules. Chem. Sci. 10, 9907–9921 (2019).

    Article  Google Scholar 

  10. Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge Univ. Press, 2011).

  11. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    Article  Google Scholar 

  12. Cho, M., Brixner, T., Stiopkin, I., Vaswani, H. & Fleming, G. R. Two dimensional electronic spectroscopy of molecular complexes. J. Chinese Chem. Soc. 53, 15–24 (2006).

    Article  Google Scholar 

  13. Warrick, E. R., Cao, W., Neumark, D. M. & Leone, S. R. Probing the dynamics of Rydberg and valence states of molecular nitrogen with attosecond transient absorption spectroscopy. J. Phys. Chem. A 120, 3165–3174 (2016).

    Article  Google Scholar 

  14. Cattaneo, L. et al. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat. Phys. 14, 733–738 (2018).

    Article  Google Scholar 

  15. Liu, Y., Knopp, G., Qin, C. & Gerber, T. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging. Chem. Phys. 446, 142–147 (2015).

    Article  Google Scholar 

  16. Fuji, T. et al. Ultrafast photodynamics of furan. J. Chem. Phys. 133, 234303 (2010).

    Article  ADS  Google Scholar 

  17. Filatov, M., Lee, S., Nakata, H. & Choi, C.-H. Signatures of conical intersection dynamics in the time-resolved photoelectron spectrum of furan: theoretical modeling with an ensemble density functional theory method. Int. J. Mol. Sci. 22, 4276 (2021).

    Article  Google Scholar 

  18. Neville, S. P., Chergui, M., Stolow, A. & Schuurman, M. S. Ultrafast X-ray spectroscopy of conical intersections. Phys. Rev. Lett. 120, 243001 (2018).

    Article  ADS  Google Scholar 

  19. Hua, W. et al. Monitoring conical intersections in the ring opening of furan by attosecond stimulated X-ray Raman spectroscopy. Struct. Dyn. 3, 023601 (2016).

    Article  Google Scholar 

  20. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  21. Haessler, S. et al. Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200–206 (2010).

    Article  Google Scholar 

  22. Torres, R. et al. Probing orbital structure of polyatomic molecules by high-order harmonic generation. Phys. Rev. Lett. 98, 203007 (2007).

    Article  ADS  Google Scholar 

  23. Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    Article  ADS  Google Scholar 

  24. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  25. Robinson, M. S. et al. Ultrafast photo-ion probing of the ring-opening process in trans-stilbene oxide. Chem. A Eur. J. 27, 11418–11427 (2021).

    Article  Google Scholar 

  26. Weinkauf, R., Lehr, L., Schlag, E. W., Salzmann, S. & Marian, C. M. Ultrafast dynamics in thiophene investigated by femtosecond pump probe photoelectron spectroscopy and theory. Phys. Chem. Chem. Phys. 10, 393–404 (2008).

    Article  Google Scholar 

  27. Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).

    Article  Google Scholar 

  28. Srinivasan, R., Feenstra, J. S., Park, S. T., Xu, S. & Zewail, A. H. Dark structures in molecular radiationless transitions determined by ultrafast diffraction. Science 307, 558–563 (2005).

    Article  ADS  Google Scholar 

  29. Gromov, E. V., Trofimov, A. B., Gatti, F. & Köppel, H. Theoretical study of photoinduced ring-opening in furan. J. Chem. Phys. 133, 164309 (2010).

    Article  ADS  Google Scholar 

  30. Gavrilov, N., Salzmann, S. & Marian, C. M. Deactivation via ring opening: a quantum chemical study of the excited states of furan and comparison to thiophene. Chem. Phys. 349, 269–277 (2008).

    Article  Google Scholar 

  31. Ashfold, M. N. et al. Exploring the dynamics of the photoinduced ring-opening of heterocyclic molecules. J. Phys. Chem. Lett. 8, 3440–3451 (2017).

    Article  Google Scholar 

  32. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  ADS  Google Scholar 

  33. Cousin, S. L. et al. High-flux table-top soft X-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy. Opt. Lett. 39, 5383–5386 (2014).

    Article  ADS  Google Scholar 

  34. Saito, N. et al. Real-time observation of electronic, vibrational and rotational dynamics in nitric oxide with attosecond soft X-ray pulses at 400 eV. Optica 6, 1542–1546 (2019).

    Article  ADS  Google Scholar 

  35. Buades, B. et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES. Appl. Phys. Rev. 8, 011408 (2021).

    Article  ADS  Google Scholar 

  36. Sidiropoulos, T. P. H. et al. Probing the energy conversion pathways between light, carriers and lattice in real time with attosecond core-level spectroscopy. Phys. Rev. X 11, 041060 (2021).

    Google Scholar 

  37. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).

    Article  ADS  Google Scholar 

  38. Zinchenko, K. S. et al. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 371, 489–494 (2021).

    Article  ADS  Google Scholar 

  39. Wang, H. et al. Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010).

    Article  ADS  Google Scholar 

  40. Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–58 (2017).

    Article  ADS  Google Scholar 

  41. Ridente, E. et al. Femtosecond symmetry breaking and coherent relaxation of methane cations via X-ray spectroscopy. Science 380, 713–717 (2023).

    Article  ADS  Google Scholar 

  42. Summers, A. M. et al. Realizing attosecond core-level X-ray spectroscopy for the investigation of condensed matter systems. Ultrafast Sci. 3, 0004 (2023).

    Article  Google Scholar 

  43. Gromov, E. V., Trofimov, A. B., Vitkovskaya, N. M., Schirmer, J. & Köppel, H. Theoretical study of the low-lying excited singlet states of furan. J. Chem. Phys. 119, 737–753 (2003).

    Article  ADS  Google Scholar 

  44. Gromov, E. V. et al. Theoretical study of excitations in furan: spectra and molecular dynamics. J. Chem. Phys. 121, 4585–4598 (2004).

    Article  ADS  Google Scholar 

  45. Stenrup, M. & Larson, Å. A computational study of radiationless deactivation mechanisms of furan. Chem. Phys. 379, 6–12 (2011).

    Article  Google Scholar 

  46. Schalk, O. et al. Competition between ring-puckering and ring-opening excited state reactions exemplified on 5H-furan-2-one and derivatives. J. Chem. Phys. 152, 064301 (2020).

    Article  ADS  Google Scholar 

  47. Adachi, S., Schatteburg, T., Humeniuk, A., Mitrić, R. & Suzuki, T. Probing ultrafast dynamics during and after passing through conical intersections. Phys. Chem. Chem. Phys. 21, 13902–13905 (2019).

    Article  Google Scholar 

  48. Spesyvtsev, R., Horio, T., Suzuki, Y.-I. & Suzuki, T. Excited-state dynamics of furan studied by sub-20-fs time-resolved photoelectron imaging using 159-nm pulses. J. Chem. Phys. 143, 014302 (2015).

    Article  ADS  Google Scholar 

  49. Urness, K. N. et al. Pyrolysis of furan in a microreactor. J. Chem. Phys. 139, 124305 (2013).

    Article  ADS  Google Scholar 

  50. Gromov, E. V., Lévêque, C., Gatti, F., Burghardt, I. & Köppel, H. Ab initio quantum dynamical study of photoinduced ring opening in furan. J. Chem. Phys. 135, 164305 (2011).

    Article  ADS  Google Scholar 

  51. Wang, E. et al. Time-resolved Coulomb explosion imaging unveils ultrafast ring opening of furan. Preprint at https://arxiv.org/abs/2311.05099v1 (2023).

  52. Wolf, T. J. A. et al. Imaging the ring opening reaction of 1,3-cyclohexadiene with MeV ultrafast electron diffraction. EPJ Web Conf. 205, 07006 (2019).

    Article  Google Scholar 

  53. Bhattacherjee, A. et al. Photoinduced heterocyclic ring opening of furfural: distinct open-chain product identification by ultrafast X-ray transient absorption spectroscopy. J. Am. Chem. Soc. 140, 12538–12544 (2018).

    Article  Google Scholar 

  54. Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: state of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2020).

    Article  Google Scholar 

  55. Vidal, M. L., Feng, X., Epifanovsky, E., Krylov, A. I. & Coriani, S. New and efficient equation-of-motion coupled-cluster framework for core-excited and core-ionized states. J. Chem. Theory Comput. 15, 3117–3133 (2019).

    Article  Google Scholar 

  56. Richter, M., Marquetand, P., González-Vázquez, J., Sola, I. & González, L. SHARC: ab initio molecular dynamics with surface hopping in the adiabatic representation including arbitrary couplings. J. Chem. Theory Comput. 7, 1253–1258 (2011).

    Article  Google Scholar 

  57. Lebedev, M. V., Misochko, O. V., Dekorsky, T. & Georgiev, N. On the nature of ‘coherent artifact’. J. Exp. Theor. Phys. 100, 272–282 (2005).

    Article  ADS  Google Scholar 

  58. Kobayashi, Y., Neumark, D. M. & Leone, S. R. Theoretical analysis of the role of complex transition dipole phase in XUV transient-absorption probing of charge migration. Opt. Express 30, 5673–5682 (2022).

    Article  Google Scholar 

  59. Ziems, K. M. & Stefanie, G. Theory data for: attosecond core-level absorption spectroscopy reveals the electronic and nuclear dynamics of molecular ring-opening. Zenodo https://doi.org/10.5281/zenodo.10575861 (2024).

Download references

Acknowledgements

J.B. acknowledges financial support from the European Research Council for ERC Advanced Grant ‘TRANSFORMER’ (788218), ERC Proof of Concept Grant ‘miniX’ (840010), FET-OPEN ‘PETACom’ (829153), FET-OPEN ‘OPTOlogic’ (899794), FET-OPEN ‘TwistedNano’ (101046424), Laserlab-Europe (871124), Marie Skłodowska-Curie ITN ‘smart-X’ (860553) and MINECO for Plan Nacional PID2020–112664-GB-I00; AGAUR for SGR-2021-01449, MINECO for ‘Severo Ochoa’ (CEX2019-000910-S), Fundació Cellex Barcelona, the CERCA Programme/Generalitat de Catalunya and the Alexander von Humboldt Foundation for the Friedrich Wilhelm Bessel Prize. S.S. acknowledges Marie Skłodowska-Curie grant agreement no. 713729 (COFUND). M.R. and A.S. acknowledge Marie Skłodowska-Curie grant agreement no. 754510 (PROBIST). K.M.Z. and S.G. are part of the Max Planck School of Photonics supported by BMBF, Max Planck Society and Fraunhofer Society. S.G. highly acknowledges support from the European Research Council via the Consolidator Grant QUEM-CHEM (772676) and the CRC 1375 NOA—‘Nonlinear Optics down to Atomic scales’. K.M.Z. acknowledges fruitful discussions with M. Richter. We thank J. Menino and C. Dengra for their technical support.

Author information

Authors and Affiliations

Authors

Contributions

J.B. supervised the project. S.S. and M.R. performed the experiments with support from J.B., A.S., H.-W.S. and Y.-H.C. S.S. analysed the experimental data with support from M.R., J.B. and K.M.Z. K.M.Z. performed the quantum chemical and semi-classical dynamics calculations with support from S.G. K.M.Z. and S.G. analysed the theoretical data. J.B. wrote the paper with input from S.S., K.M.Z. and S.G.

Corresponding author

Correspondence to J. Biegert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mohammed Hassan, Zhi-Heng Loh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Supplementary Figs. 1–22, Tables 1–5 and refs. 1–39.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severino, S., Ziems, K.M., Reduzzi, M. et al. Attosecond core-level absorption spectroscopy reveals the electronic and nuclear dynamics of molecular ring opening. Nat. Photon. 18, 731–737 (2024). https://doi.org/10.1038/s41566-024-01436-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-024-01436-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing