Abstract
Thermal nanophotonics has undergone a revolution in recent decades, benefiting from in-depth studies in nano-optics and breakthroughs in nanotechnologies. The majority of thermal devices are constrained by Kirchhoff’s law of thermal radiation, whereby spectral directional absorptivity and emissivity are identical according to Lorentz reciprocity. This restriction introduces an intrinsic loss in a plethora of energy technologies and prevents us from controlling emission and absorption independently. Recently, there has been considerable progress in realizing nonreciprocal radiation to overcome these limitations. Here we summarize the fundamental physics of nonreciprocal radiation, lay out different approaches to generalize Kirchhoff’s law, and highlight several promising nonreciprocal thermal applications. This comprehensive overview of nonreciprocal thermal photonics may reveal new physics, unprecedented nonreciprocal effects and broader potential applications.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
All associated data and materials are available in the manuscript.
References
Baranov, D. G. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).
Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).
Liu, T., Guo, C., Li, W. & Fan, S. Thermal photonics with broken symmetries. eLight 2, 25 (2022).
Wang, X. et al. Observation of nonvanishing optical helicity in thermal radiation from symmetry-broken metasurfaces. Sci. Adv. 9, eade4203 (2023).
Branham, M. S. et al. 15.7% efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures. Adv. Mater. 27, 2182–2188 (2015).
Yu, Z., Raman, A. & Fan, S. Fundamental limit of nanophotonic light-trapping in solar cells. Proc. Natl Acad. Sci. USA 107, 17491–17496 (2010).
Burger, T., Sempere, C., Roy-Layinde, B. & Lenert, A. Present efficiencies and future opportunities in thermophotovoltaics. Joule 4, 1660–1680 (2020).
LaPotin, A. et al. Thermophotovoltaic efficiency of 40%. Nature 604, 287–291 (2022).
Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).
Hsu, P.-C. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).
Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).
Tan, X. et al. Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors. Nat. Commun. 11, 5245 (2020).
Cattoni, A. et al. λ3/1,000 plasmonic nanocavities for biosensing fabricated by soft UV nanoimprint lithography. Nano Lett. 11, 3557–3563 (2011).
Kirchhoff, G. I. On the relation between the radiating and absorbing powers of different bodies for light and heat. Lond. Edinb. Dubl. Philos. Mag. J. Sci. 20, 1–21 (1860).
Siegel, R. Thermal Radiation Heat Transfer 4th edn (CRC Press, 2001).
Landsberg, P. T. & Tonge, G. Thermodynamic energy conversion efficiencies. J. Appl. Phys. 51, R1–R20 (1980).
Snyder, W. C., Wan, Z. & Li, X. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Appl. Opt. 37, 3464–3470 (1998).
Bergman, T. L., Incropera, F. P., DeWitt, D. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2011).
Greffet, J.-J. & Nieto-Vesperinas, M. Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. J. Opt. Soc. Am. A 15, 2735–2744 (1998).
Tsurimaki, Y. et al. Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking. Phys. Rev. B 101, 165426 (2020).
Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).
Bertolotti, M. Waves and fields in optoelectronics. Opt. Acta 32, 748 (1985).
Miller, D. A. B., Zhu, L. & Fan, S. Universal modal radiation laws for all thermal emitters. Proc. Natl Acad. Sci. USA 114, 4336–4341 (2017).
Guo, C., Zhao, B. & Fan, S. Adjoint Kirchhoff’s law and general symmetry implications for all thermal emitters. Phys. Rev. X 12, 021023 (2022).
Khandekar, C., Khosravi, F., Li, Z. & Jacob, Z. New spin-resolved thermal radiation laws for nonreciprocal bianisotropic media. New J. Phys. 22, 123005 (2020).
Zhao, B. et al. Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field. Opt. Lett. 44, 4203–4206 (2019).
Zhao, B., Guo, C., Garcia, C. A. C., Narang, P. & Fan, S. Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett. 20, 1923–1927 (2020).
Shayegan, K. J., Zhao, B., Kim, Y., Fan, S. & Atwater, H. A. Nonreciprocal infrared absorption via resonant magneto-optical coupling to InAs. Sci. Adv. 8, eabm4308 (2022).
Liu, M. Q. & Zhao, C. Y. Near-infrared nonreciprocal thermal emitters induced by asymmetric embedded eigenstates. Inter. J. Heat Mass Transf. 186, 122435 (2022).
Liu, M. et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat. Mater. 22, 1196–1202 (2023).
Seeger, K. Semiconductor Physics (Springer Science & Business Media, 2013).
Armelles, G., Cebollada, A., García-Martín, A. & González, M. U. Magnetoplasmonics: combining magnetic and plasmonic functionalities. Adv. Opt. Mater. 1, 10–35 (2013).
Asadchy, V. S., Guo, C., Zhao, B. & Fan, S. Sub‐wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv. Opt. Mater. 8, 2000100 (2020).
Stadler, B. J. H. & Mizumoto, T. Integrated magneto-optical materials and isolators: a review. IEEE Photon. J. 6, 1–15 (2014).
Del Bino, L. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).
Greidanus, F. J. A. M. & Klahn, S. Magneto-optical recording and data storage materials. Adv. Mater. 1, 45–51 (1989).
Stenzel, R. L. Microwave Absorption And Emission From Magnetized Afterglow Plasmas (California Institute of Technology, 1970).
Bornatici, M. Theory of electron cyclotron absorption of magnetized plasmas. Plasma Phys. 24, 629–638 (1982).
Fidone, I., Giruzzi, G. & Chiozzi, G. Emission and absorption profiles in electron cyclotron radiation for nonthermal plasmas. Plasma Phys. Control. Fusion 31, 2003–2010 (1989).
Bornatici, M. & Engelmann, F. Electron‐cyclotron absorption and emission: ‘Vexatae quaestiones’. Phys. Plasmas 1, 189–198 (1994).
Madelung, O. Semiconductors: Data Handbook (Springer Science & Business Media, 2004).
Liu, M. et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 127, 266101 (2021).
Alù, A., Silveirinha, M. G., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).
Sakotic, Z., Krasnok, A., Cselyuszka, N., Jankovic, N. & Alú, A. Berreman embedded eigenstates for narrow-band absorption and thermal emission. Phys. Rev. Appl. 13, 064073 (2020).
Campione, S., Brener, I. & Marquier, F. Theory of epsilon-near-zero modes in ultrathin films. Phys. Rev. B 91, 121408 (2015).
Shayegan, K. J., Biswas, S., Zhao, B., Fan, S. & Atwater, H. A. Direct observation of the violation of Kirchhoff’s law of thermal radiation. Nat. Photon. 17, 891–896 (2023).
Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).
Li, Z. et al. Weyl semimetal TaAs: crystal growth, morphology and thermodynamics. Cryst. Growth Design 16, 1172–1175 (2016).
Belopolski, I. et al. Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).
Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).
Xu, B. et al. Optical spectroscopy of the Weyl semimetal TaAs. Phys. Rev. B 93, 121110 (2016).
Wu, J. & Qing, Y. M. Strong nonreciprocal radiation with topological photonic crystal heterostructure. Appl. Phys. Lett. 121, 112201 (2022).
Zhao, B. et al. Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels. Phys. Rev. Applied 16, 064001 (2021).
Ghanekar, A., Wang, J., Guo, C., Fan, S. & Povinelli, M. L. Nonreciprocal thermal emission using spatiotemporal modulation of graphene. ACS Photonics 10, 170–178 (2023).
Ghanekar, A., Wang, J., Fan, S. & Povinelli, M. L. Violation of Kirchhoff’s law of thermal radiation with space-time modulated grating. ACS Photonics 9, 1157–1164 (2022).
Bloembergen, N. Conservation laws in nonlinear optics*. J. Opt. Soc. Am. 70, 1429–1436 (1980).
Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).
Hadad, Y., Soric, J. C. & Alu, A. Breaking temporal symmetries for emission and absorption. Proc. Natl Acad. Sci. USA 113, 3471–3475 (2016).
Buddhiraju, S., Li, W. & Fan, S. Photonic refrigeration from time-modulated thermal emission. Phys. Rev. Lett. 124, 077402 (2020).
Khandekar, C., Pick, A., Johnson, S. G. & Rodriguez, A. W. Radiative heat transfer in nonlinear Kerr media. Phys. Rev. B 91, 115406 (2015).
Khandekar, C., Yang, L., Rodriguez, A. W. & Jacob, Z. Quantum nonlinear mixing of thermal photons to surpass the blackbody limit. Opt. Express 28, 2045–2059 (2020).
Khandekar, C., Lin, Z. & Rodriguez, A. W. Thermal radiation from optically driven Kerr (χ(3)) photonic cavities. Appl. Phys. Lett. 106, 151109 (2015).
Soo, H. & Krüger, M. Fluctuational electrodynamics for nonlinear materials in and out of thermal equilibrium. Phys. Rev. B 97, 045412 (2018).
Khandekar, C. & Rodriguez, A. W. Near-field thermal upconversion and energy transfer through a Kerr medium. Opt. Express 25, 23164 (2017).
Khandekar, C., Messina, R. & Rodriguez, A. W. Near-field refrigeration and tunable heat exchange through four-wave mixing. AIP Adv. 8, 055029 (2018).
Ghashami, M. et al. Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients. Phys. Rev. Lett. 120, 175901 (2018).
Lim, M., Song, J., Lee, S. S. & Lee, B. J. Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons. Nat. Commun. 9, 4302 (2018).
Yang, J. et al. Observing of the super-Planckian near-field thermal radiation between graphene sheets. Nat. Commun. 9, 4033 (2018).
Shi, K., Chen, Z., Xu, X., Evans, J. & He, S. Optimized colossal near‐field thermal radiation enabled by manipulating coupled plasmon polariton geometry. Adv. Mater. 33, 2106097 (2021).
Green, M. A. Time-asymmetric photovoltaics. Nano Lett. 12, 5985–5988 (2012).
Park, Y., Zhao, B. & Fan, S. Reaching the ultimate efficiency of solar energy harvesting with a nonreciprocal multijunction solar cell. Nano Lett. 22, 448–452 (2022).
Jafari Ghalekohneh, S. & Zhao, B. Nonreciprocal solar thermophotovoltaics. Phys. Rev. Appl. 18, 034083 (2022).
Park, Y., Omair, Z. & Fan, S. Nonreciprocal thermophotovoltaic systems. ACS Photonics 9, 3943–3949 (2022).
Ben-Abdallah, P. Photon thermal Hall effect. Phys. Rev. Lett. 116, 084301 (2016).
Fernández-Alcázar, L. J., Kononchuk, R., Li, H. & Kottos, T. Extreme nonreciprocal near-field thermal radiation via Floquet photonics. Phys. Rev. Lett. 126, 204101 (2021).
Ott, A., Messina, R., Ben-Abdallah, P. & Biehs, S.-A. Radiative thermal diode driven by nonreciprocal surface waves. Appl. Phys. Lett. 114, 163105 (2019).
Pusch, A., Gordon, J. M., Mellor, A., Krich, J. J. & Ekins-Daukes, N. J. Fundamental efficiency bounds for the conversion of a radiative heat engine’s own emission into work. Phys. Rev. Appl. 12, 064018 (2019).
Ries, H. Complete and reversible absorption of radiation. Appl. Phys. B 32, 153–156 (1983).
Zhang, Z. & Zhu, L. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer. Phys. Rev. Appl. 18, 027001 (2022).
Marti, A. & Arafijo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energ. Mat. Sol. C 43, 203–222 (1996).
Buddhiraju, S., Santhanam, P. & Fan, S. Thermodynamic limits of energy harvesting from outgoing thermal radiation. Proc. Natl Acad. Sci. USA 115, E3609–E3615 (2018).
Byrnes, S. J., Blanchard, R. & Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl Acad. Sci. USA 111, 3927–3932 (2014).
Li, W., Buddhiraju, S. & Fan, S. Thermodynamic limits for simultaneous energy harvesting from the hot sun and cold outer space. Light Sci. Appl. 9, 68 (2020).
Park, Y. et al. Violating Kirchhoff’s law of thermal radiation in semitransparent structures. ACS Photonics 8, 2417–2424 (2021).
Zhu, L. & Fan, S. Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117, 134303 (2016).
Zhu, L., Guo, Y. & Fan, S. Theory of many-body radiative heat transfer without the constraint of reciprocity. Phys. Rev. B 97, 094302 (2018).
Ott, A., Biehs, S.-A. & Ben-Abdallah, P. Anomalous photon thermal Hall effect. Phys. Rev. B 101, 241411 (2020).
Guo, C., Guo, Y. & Fan, S. Relation between photon thermal Hall effect and persistent heat current in nonreciprocal radiative heat transfer. Phys. Rev. B 100, 205416 (2019).
Ferreiros, Y., Zyuzin, A. A. & Bardarson, J. H. Anomalous Nernst and thermal Hall effects in tilted Weyl semimetals. Phys. Rev. B 96, 115202 (2017).
Khandekar, C. & Jacob, Z. Thermal spin photonics in the near-field of nonreciprocal media. New J. Phys. 21, 103030 (2019).
Ott, A., Ben-Abdallah, P. & Biehs, S.-A. Circular heat and momentum flux radiated by magneto-optical nanoparticles. Phys. Rev. B 97, 205414 (2018).
Ott, A. & Biehs, S.-A. Thermal rectification and spin-spin coupling of nonreciprocal localized and surface modes. Phys. Rev. B 101, 155428 (2020).
Li, Q., He, H., Chen, Q. & Song, B. Thin-film radiative thermal diode with large rectification. Phys. Rev. Appl. 16, 014069 (2021).
Landrieux, S., Ben-Abdallah, P. & Messina, R. Graphene-based enhancement of near-field radiative-heat-transfer rectification. Appl. Phys. Lett. 120, 143502 (2022).
Guo, C., Zhao, B., Huang, D. & Fan, S. Radiative thermal router based on tunable magnetic Weyl semimetals. ACS Photonics 7, 3257–3263 (2020).
Latella, I. & Ben-Abdallah, P. Giant thermal magnetoresistance in plasmonic structures. Phys. Rev. Lett. 118, 173902 (2017).
Abraham Ekeroth, R. M., Ben-Abdallah, P., Cuevas, J. C. & García-Martín, A. Anisotropic thermal magnetoresistance for an active control of radiative heat transfer. ACS Photonics 5, 705–710 (2018).
Zhou, C.-L., Qu, L., Zhang, Y. & Yi, H.-L. Enhancement and active mediation of near-field radiative heat transfer through multiple nonreciprocal graphene surface plasmons. Phys. Rev. B 102, 245421 (2020).
Wu, J., Wu, F., Zhao, T., Antezza, M. & Wu, X. Dual-band nonreciprocal thermal radiation by coupling optical Tamm states in magnetophotonic multilayers. Int. J. Therm. Sci. 175, 107457 (2022).
Liu, M. et al. Spectral phase singularity and topological behavior in perfect absorption. Phys. Rev. B 107, L241403 (2023).
Ignatyeva, D. O. et al. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nat. Commun. 11, 5487 (2020).
Yang, W. et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nat. Commun. 13, 1719 (2022).
Wang, X., Díaz-Rubio, A., Li, H., Tretyakov, S. A. & Alù, A. Theory and design of multifunctional space-time metasurfaces. Phys. Rev. Appl. 13, 044040 (2020).
Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).
Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).
Chen, X. et al. Electrically tunable physical properties of two-dimensional materials. Nano Today 27, 99–119 (2019).
Inoue, T., Zoysa, M. D., Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).
Park, J. et al. Dynamic thermal emission control with InAs-based plasmonic metasurfaces. Sci. Adv. 4, eaat3163 (2018).
Acknowledgements
We acknowledge support from the National Natural Science Foundation of China (nos. 52306103 and 52120105009) and China Postdoctoral Science Foundation (nos. BX20220200 and 2023M732199). C.-W.Q. acknowledges financial support from the Ministry of Education, Republic of Singapore (grant no. A-8000107-01-00), and the National Research Foundation, Singapore (NRF), under NRF’s Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation μElectronics (SHINE) Centre funding programme. S.F. acknowledges support from the US Department of Energy (grant no. DE-FG02-07ER46426).
Author information
Authors and Affiliations
Contributions
M.L. and C.-W.Q. conceived the ideas. All authors discussed the content of the Review. S.Y. and M.L. prepared the figures. M.L. and S.Y. wrote the paper with input and comments from all authors. C.Z., S.F. and C.-W.Q. supervised the project. All authors reviewed and edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Makoto Shimizu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, S., Liu, M., Zhao, C. et al. Nonreciprocal thermal photonics. Nat. Photon. 18, 412–424 (2024). https://doi.org/10.1038/s41566-024-01409-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-024-01409-y