Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes


The external quantum efficiency of state-of-the-art quantum dot light-emitting diodes is limited by the low photon out-coupling efficiency. Light-emitting diodes using oriented nanostructures such as nanorods, nanoplatelets and dot-in-disc nanocrystals favour photon out-coupling; however, their internal quantum efficiency is often compromised and thus achieving a net gain has proved challenging. Here we report isotropic-shaped quantum dots featuring a mixed-crystallographic structure composed of wurtzite and zinc blende phases. The wurtzite phase promotes dipole–dipole interactions that orient quantum dots in solution-processed films, whereas the zinc blende phase helps lift the electronic state degeneracy to enable directional light emission. These combined features improve photon out-coupling without compromising internal quantum efficiency. Fabricated light-emitting diodes exhibit an external quantum efficiency of 35.6% and can be continuously operated with an initial brightness of 1,000 cd m2 for 4.5 years with a minimal performance loss of about 5%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of polytypic QDs with large permanent dipole moments.
Fig. 2: Characterization of polytypic QDs and their orientation.
Fig. 3: Simulations and experimental studies of QD-LED devices.
Fig. 4: PCE and lifetime tests of QD-LED devices.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request. They are also available at figshare: Source Data are provided with this paper.


  1. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13–23 (2013).

  2. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shen, H. et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics 13, 192–197 (2019).

  4. Won, Y. H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Deng, Y. Z. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics 16, 505–511 (2022).

  7. Brutting, W., Frischeisen, J., Schmidt, T. D., Scholz, B. J. & Mayr, C. Device efficiency of organic light-emitting diodes: progress by improved light out-coupling. Phys. Status Solidi a 210, 44–65 (2013).

    Article  ADS  Google Scholar 

  8. Scott, R. et al. Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. 12, 1155–1160 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Kim, W. D. et al. Pushing the efficiency envelope for semiconductor nanocrystal-based electroluminescence devices using anisotropic nanocrystals. Chem. Mater. 31, 3066–3082 (2019).

    Article  CAS  Google Scholar 

  10. Kumar, S. et al. Anisotropic nanocrystal superlattices overcoming intrinsic light outcoupling efficiency limit in perovskite quantum dot light-emitting diodes. Nat. Commun. 13, 2106 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cunningham, P. D. et al. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology. ACS Nano 10, 5769–5781 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Gao, Y., Weidman, M. C. & Tisdale, W. A. CdSe nanoplatelet films with controlled orientation of their transition dipole moment. Nano Lett. 17, 3837–3843 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Nam, S., Oh, N., Zhai, Y. & Shim, M. High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 9, 878–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Cassette, E. et al. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 6, 6741–6750 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, Y., Pu, C., Lei, H., Qin, H. & Peng, X. CdSe@CdS dot@platelet nanocrystals: controlled epitaxy, monoexponential decay of two-dimensional exciton, and nonblinking photoluminescence of single nanocrystal. J. Am. Chem. Soc. 141, 17617–17628 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, Z., Zhang, Z., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Talapin, D. V., Shevchenko, E. V., Murray, C. B., Titov, A. V. & Kral, P. Dipole–dipole interactions in nanoparticle superlattices. Nano Lett. 7, 1213–1219 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Nann, T. & Schneider, J. Origin of permanent electric dipole moments in wurtzite nanocrystals. Chem. Phys. Lett. 384, 150–152 (2004).

    Article  ADS  CAS  Google Scholar 

  21. Yeh, C. Y., Lu, Z. W., Froyen, S. & Zunger, A. Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Park, Y.-S., Lim, J. & Klimov, V. I. Asymmetrically strained quantum dots with non-fluctuating single-dot emission spectra and subthermal room-temperature linewidths. Nat. Mater. 18, 249–255 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Segarra, C., Rajadell, F., Climente, J. I. & Planelles, J. Influence of polytypism on the electronic structure of CdSe/CdS and CdSe/CdSe core/shell nanocrystals. J. Phys. Chem. C 121, 6386–6392 (2017).

    Article  CAS  Google Scholar 

  24. Shim, M. & Guyot-Sionnest, P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J. Chem. Phys. 111, 6955–6964 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Marcato, T., Krumeich, F. & Shih, C. J. Confinement-tunable transition dipole moment orientation in perovskite nanoplatelet solids and binary blends. ACS Nano 16, 18459–18471 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Song, Y. et al. Enhanced emission directivity from asymmetrically strained colloidal quantum dots. Sci. Adv. 8, 8 (2022).

    Article  Google Scholar 

  27. Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Fan, F. et al. Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Taminiau, T. H., Karaveli, S., van Hulst, N. F. & Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 3, 979 (2012).

    Article  ADS  PubMed  Google Scholar 

  30. Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nat. Nanotechnol. 8, 271–276 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Zhao, N., Yang, C., Bian, F., Guo, D. & Ouyang, X. SGTools: a suite of tools for processing and analyzing large data sets from in situ X-ray scattering experiments. J. Appl. Crystallogr. 55, 195–203 (2022).

    Article  ADS  CAS  Google Scholar 

  32. Benisty, H., Stanley, R. & Mayer, M. Method of source terms for dipole emission modification in modes of arbitrary planar structures. J. Opt. Soc. Am. A 15, 1192–1201 (1998).

    Article  ADS  Google Scholar 

  33. Mitsas, C. L. & Siapkas, D. I. Generalized matrix-method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. Appl. Optics 34, 1678–1683 (1995).

    Article  ADS  CAS  Google Scholar 

  34. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    Article  ADS  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  37. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  CAS  Google Scholar 

  38. Paier, J. et al. Screened hybrid density functionals applied to solids. J. Chem. Phys. 124, 154709 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  40. Kühne, T. D. et al. CP2K: an electronic structure and molecular dynamics software package—quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    Article  ADS  PubMed  Google Scholar 

  41. Kortschot, R. J., van Rijssel, J., van Dijk-Moes, R. J. A. & Erné, B. H. Equilibrium structures of PbSe and CdSe colloidal quantum dots detected by dielectric spectroscopy. J. Phys. Chem. C 118, 7185–7194 (2014).

    Article  CAS  Google Scholar 

  42. Okamoto, S. et al. Simple measurement of quantum efficiency in organic electroluminescent devices. Jpn. J. Appl. Phys. 40, L783–L784 (2001).

    Article  ADS  CAS  Google Scholar 

  43. Forrest, S. R., Bradley, D. D. C. & Thompson, M. E. Measuring the efficiency of organic light-emitting devices. Adv. Mater. 15, 1043–1048 (2003).

    Article  CAS  Google Scholar 

Download references


We gratefully acknowledge the financial support from the National Natural Science Foundation of China (grant nos. U22A2072, 52272167 and BE3250011 to H.B.S., F.J.F. and J.L., respectively), Innovation Program for Quantum Science and Technology (grant no. 2021ZD0301603 to F.J.F), the National Key Research and Development Program of China (grant no. 2022YFA1505100 to J.L), the Fundamental Research Funds for the Central Universities (grant no. 23X010301599 to J.L), and Shanghai Pilot Program for Basic Research—Shanghai Jiao Tong University. We thank the Hefei Advanced Computing Center and thank the Shanghai Synchrotron Radiation Facility for the provision of GIWAXS tests at the beamline BL16B1.

Author information

Authors and Affiliations



F.J.F. and H.B.S. conceptualized the work and designed the experiments. H.B.S., F.J.F., J.F.D. and E.H.S. supervised the project. H.Y.X. and Y.S. performed the BFP and dielectric spectroscopy experiments and fitting, as well as the transfer matrix computations. P.H.Z., J.J.S and Y.G. synthesized the materials, fabricated the devices and collected the performance data of the QD-LEDs. J.X., S.C.F. and O.V. performed DFT calculations. Z.J.Z. contributed to dielectric spectroscopy experiments. C.M.Y., Y.F.H. and J.L. performed GIWAXS measurements and analyses. H.Y.X., F.J.F., H.B.S., J.M.P. and E.H.S. wrote the paper. All authors contributed to the scientific discussion about this work.

Corresponding authors

Correspondence to Huaibin Shen, Jiangfeng Du, Edward H. Sargent or Fengjia Fan.

Ethics declarations

Competing interests

Patents related to directional light emission QDs will be submitted.

Peer review

Peer review information

Nature Photonics thanks Chih-Jen Shih, Jiwoong Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3 and Supplementary Figs. 1–26.

Source data

Source Data Fig. 1

Fig. 1 source data in spreadsheet.

Source Data Fig. 2

Fig. 2 source data in spreadsheet.

Source Data Fig. 3

Fig. 3 source data in spreadsheet.

Source Data Fig. 4

Fig. 4 source data in spreadsheet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Song, J., Zhou, P. et al. Dipole–dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photon. 18, 186–191 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing