Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption

Abstract

Programmable photonic integrated circuits offer exciting opportunities for optoelectronic signal processing, computing and communications in a number of emerging applications in classical and quantum photonics. In this work, we show the array-level demonstration of tunable couplers and phase shifters with capacitive electrostatic microelectromechanical actuators in a recirculating mesh network. The overall fabrication process is compatible with the conventional wafer-level passive silicon photonics platform. Extremely low unit-level standby power consumption of <10 femtowatts and reconfiguration energy of <40 picojoules with <11 V programming voltages offer well-balanced, scalable routes for efficient phase and amplitude modulation of the guided lightwaves with sub-decibel optical losses. The extinction ratios of the continuously tunable directional coupler exceed 30 dB. Full 2π-phase shifting can be achieved with a modulation efficiency of less than 0.075 V cm and a phase-dependent insertion-loss variation of 0.01 dB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scalable, low-loss and <10-fW-static-power PPIC.
Fig. 2: Measured characteristics of the MEMS-tunable elements.
Fig. 3: MEMS-based recirculating-type PPIC and its measured spectral responses at various configurations.
Fig. 4: A MEMS-based 2 × 2 unitary gate and its measured responses.

Similar content being viewed by others

Data availability

The data that support the plots and findings within this paper are available from the corresponding authors upon reasonable request.

References

  1. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    ADS  Google Scholar 

  2. Pérez, D., Gasulla, I. & Capmany, J. Programmable multifunctional integrated nanophotonics. Nanophotonics 7, 1351–1371 (2018).

    Google Scholar 

  3. Miller, D. A. B. Self-configuring universal linear optical component [invited]. Photon. Res. 1, 1–15 (2013).

    ADS  Google Scholar 

  4. Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).

    Google Scholar 

  5. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS  Google Scholar 

  6. Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).

    ADS  Google Scholar 

  7. Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017).

    Google Scholar 

  8. Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

    ADS  Google Scholar 

  9. Prabhu, M. et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica 7, 551–558 (2020).

    Google Scholar 

  10. Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS  Google Scholar 

  11. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    ADS  Google Scholar 

  12. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet  MATH  Google Scholar 

  13. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS  Google Scholar 

  14. Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).

    ADS  Google Scholar 

  15. Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    Google Scholar 

  16. Lu, L., Shen, L., Gao, W., Zhou, L. & Chen, J. Reconfigurable silicon photonic processor based on SCOW resonant structures. IEEE Photon. J. 11, 6603312 (2019).

    Google Scholar 

  17. Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).

    ADS  Google Scholar 

  18. Earnshaw, M. P., Cappuzzo, M. A., Chen, E., Gomez, L. & Wong-Foy, A. Ultra-low power thermo-optic silica-on-silicon waveguide membrane switch. Electron. Lett. 43, 393–394 (2007).

    ADS  Google Scholar 

  19. Nejadriahi, H., Yu, P., Pappert, S. & Fainman, Y. Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride. Opt. Lett. 46, 4646–4649 (2021).

    ADS  Google Scholar 

  20. Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2021).

    ADS  Google Scholar 

  21. Han, J. H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).

    Google Scholar 

  22. Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).

    Google Scholar 

  23. Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).

    ADS  Google Scholar 

  24. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    ADS  Google Scholar 

  25. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2018).

    ADS  Google Scholar 

  26. Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

    ADS  Google Scholar 

  27. Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. Wafer-scale silicon photonic switches beyond die size limit. Optica 6, 490–494 (2019).

    ADS  Google Scholar 

  28. Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).

    ADS  Google Scholar 

  29. Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).

  30. Edinger, P. et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett. 46, 5671–5674 (2021).

    ADS  Google Scholar 

  31. Henriksson, J. et al. Digital silicon photonic MEMS phase-shifter. In 2018 International Conference on Optical MEMS and Nanophotonics (OMN) 1–2 (IEEE, 2018).

  32. Sattari, H. et al. Silicon photonic MEMS phase-shifter. Opt. Express 27, 18959–18969 (2019).

    ADS  Google Scholar 

  33. Schuck, C., Grottke, T., Hartmann, W. & Pernice, W. H. P. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express 29, 5525–5537 (2021).

    ADS  Google Scholar 

  34. Ramey, C. et al. Dual slot-mode NOEM phase shifter. Opt. Express 29, 19113–19119 (2021).

    ADS  Google Scholar 

  35. Quack, N. et al. Integrated silicon photonic MEMS. Microsyst. Nanoeng. 9, 27 (2023).

    ADS  Google Scholar 

  36. Edinger, P. et al. Vacuum-sealed silicon photonic MEMS tunable ring resonator with an independent control over coupling and phase. Opt. Express 31, 6540–6551 (2023).

    Google Scholar 

  37. Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    ADS  Google Scholar 

  38. Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071–38086 (2019).

    ADS  Google Scholar 

  39. Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).

    ADS  Google Scholar 

  40. Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).

    ADS  Google Scholar 

  41. Singer, N. C. & Seering, W. P. Preshaping command inputs to reduce system vibration. J. Dyn. Syst., Meas., Control 112, 76–82 (1990).

    Google Scholar 

  42. Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).

    ADS  Google Scholar 

  43. Yap, K. P. et al. Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides. J. Lightwave Technol. 27, 3999–4008 (2009).

    ADS  Google Scholar 

  44. Okamoto, K. Fundamentals of Optical Waveguides (Academic Press, 2006).

  45. Hwang, H. Y. et al. Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre. IEEE Photon. J. 9, 2900210 (2017).

    Google Scholar 

  46. Jo, G. et al. Wafer-level hermetically sealed silicon photonic MEMS. Photon. Res. 10, A14–A21 (2022).

    Google Scholar 

  47. Samani, A. et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 27, 10456–10471 (2019).

    ADS  Google Scholar 

  48. Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38, 733–735 (2013).

    ADS  Google Scholar 

  49. Fang, Q. et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon. Technol. Lett. 23, 525–527 (2011).

    ADS  Google Scholar 

  50. Goh, T. et al. Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. J. Lightwave Technol. 19, 371–379 (2001).

    ADS  Google Scholar 

  51. Möller, B. A., Jensen, L., Laurent-Lund, C. & Thirstrup, C. Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion. IEEE Photon. Technol. Lett. 5, 1415–1418 (1993).

    ADS  Google Scholar 

  52. Joo, J., Park, J. & Kim, G. Cost-effective 2×2 silicon nitride Mach-Zehnder interferometric (MZI) thermo-optic switch. IEEE Photon. Technol. Lett. 30, 740–743 (2018).

    ADS  Google Scholar 

  53. Leenheer, A. J., Michael, C. P., Eichenfield, M., Stanfield, P. R. & Sims, R. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures. Opt. Express 27, 28588–28605 (2019).

    ADS  Google Scholar 

  54. Zhang, W. et al. High bandwidth capacitance efficient silicon MOS modulator. J. Lightwave Technol. 39, 201–207 (2021).

    ADS  Google Scholar 

  55. Fujikata, J., Takahashi, M., Takahashi, S., Horikawa, T. & Nakamura, T. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon. Jpn. J. Appl. Phys. 55, 042202 (2016).

    ADS  Google Scholar 

  56. Azadeh, S. S. et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 23, 23526–23550 (2015).

    Google Scholar 

  57. Yong, Z. et al. U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. Opt. Express 25, 8425–8439 (2017).

    Google Scholar 

  58. Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).

    ADS  Google Scholar 

  59. Lin, J., Sepehrian, H., Rusch, L. A. & Shi, W. Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation. Opt. Express 27, 5610–5619 (2019).

    Google Scholar 

  60. Zanzi, A. et al. Alignment tolerant, low voltage, 0.23 V cm, push-pull silicon photonic switches based on a vertical pn junction. Opt. Express 27, 32409–32426 (2019).

    Google Scholar 

  61. Streshinsky, M. et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 21, 30350–30357 (2013).

    Google Scholar 

  62. Dong, P., Chen, L. & Chen, Y. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012).

    Google Scholar 

  63. Ahmed, A. N. R. et al. High-efficiency lithium niobate modulator for K band operation. APL Photonics 5, 091302 (2020).

    ADS  Google Scholar 

  64. Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41, 5700–5703 (2016).

    Google Scholar 

  65. Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018).

    Google Scholar 

  66. Xu, M. et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4, 100802 (2019).

    ADS  Google Scholar 

  67. Rao, A. et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 23, 22746–22752 (2015).

    ADS  Google Scholar 

  68. Li, X. P., Chen, K. X. & Wang, L. F. Compact and electro-optic tunable interleaver in lithium niobate thin film. Opt. Lett. 43, 3610–3613 (2018).

    Google Scholar 

  69. Jin, M., Chen, J., Sua, Y., Kumar, P. & Huang, Y. Efficient electro-optical modulation on thin-film lithium niobate. Opt. Lett. 46, 1884–1887 (2021).

    Google Scholar 

  70. Chen, G. et al. Compact 100GBaud driverless thin-film lithium niobate modulator on a silicon substrate. Opt. Express 30, 25308–25317 (2022).

    ADS  Google Scholar 

  71. Thiessen, T. et al. 30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators. Opt. Express 27, 102–109 (2019).

    Google Scholar 

  72. Li, Q., Han, J.-H., Ho, C. P., Takagi, S. & Takenaka, M. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter. Opt. Express 26, 35003–35012 (2018).

    ADS  Google Scholar 

  73. Takenaka, M. et al. III–V/Si hybrid MOS optical phase shifter for Si photonic integrated circuits. J. Lightwave Technol. 37, 1474–1483 (2019).

    ADS  Google Scholar 

  74. Tang, H. et al. Modulation bandwidth improvement of III-V/Si hybrid MOS optical modulator by reducing parasitic capacitance. Opt. Express 30, 22848–22859 (2022).

    Google Scholar 

  75. Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS  Google Scholar 

  76. Von Keitz, J. et al. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 5, 4644–4649 (2018).

    Google Scholar 

  77. Fang, Z. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022).

    ADS  Google Scholar 

  78. Ríos, C. et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 3, 26 (2022).

  79. Pruessner, M. W., Park, D., Stievater, T. H., Kozak, D. A. & Rabinovich, W. S. Broadband opto-electro-mechanical effective refractive index tuning on a chip. Opt. Express 24, 13917–13930 (2016).

    Google Scholar 

  80. Ikeda, T. & Hane, K. A tunable notch filter using microelectromechanical microring with gap-variable busline coupler. Opt. Express 21, 22034–22042 (2013).

    ADS  Google Scholar 

  81. Chu, H. M. & Hane, K. A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides. IEEE Photon. Technol. Lett. 26, 1411–1413 (2014).

    ADS  Google Scholar 

Download references

Acknowledgements

This research project was partially supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under project no. SRFC-IT2002-04. This work was further supported by the National Research Foundation of Korea under Grant NRF-2020M3F6A1082703. The devices were fabricated at the National Nanofab Center (NNFC), South Korea. We thank J.-B. You for discussions regarding the fabrication process at NNFC.

Author information

Authors and Affiliations

Authors

Contributions

D.U.K., Y.J.P., D.Y.K. and Y.J. contributed equally to the manuscript. D.U.K. contributed to the optical simulations of the devices. Y.J.P., D.Y.K., D.U.K. and Y.J. contributed to the layout design of the chip. D.U.K., Y.J.P., Y.J., D.Y.K., M.G.L., M.S.H., M.J.H., D.J.C. and Y.R. contributed to the characterization of the devices. Y.J. contributed to the mechanical simulation and electrical measurement. S.H. and K.Y. jointly conceived the idea of the project, supervised the project and wrote the manuscript.

Corresponding authors

Correspondence to Sangyoon Han or Kyoungsik Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Lin Chang, Olav Solgaard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Performance comparisons of PPIC platforms with experimental demonstrations with either array-level or unit-level.

a, b, Performance comparisons of PPIC platforms with experimental demonstrations with either array-level or unit-level; Static power and switching energy per phase shifter device (optical loss in parentheses) (a), Optical loss and Lπ length of the phase shifter devices (response time in parentheses) (b). In these figures, each data point represents the best combination of specifications selected from all relevant references pertaining to that specific platform. Therefore, it should be noted that the actual performances of the individual references are inferior to what is illustrated in the figures except for our platform. The references are listed in Extended Data Table 2.

Extended Data Table 1 Phase shifter performances of different PIC platforms with array-level demonstrations for near-infrared wavelengths21,24,33,34,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81
Extended Data Table 2 Phase shifter performances of different PIC platforms with either array-level or unit-level demonstrations for near-infrared wavelengths

Supplementary information

Supplementary Information

Supplementary Sections 1–10, Figs. 1–14, Tables 1 and 2 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D.U., Park, Y.J., Kim, D.Y. et al. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photon. 17, 1089–1096 (2023). https://doi.org/10.1038/s41566-023-01327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01327-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing