Abstract
Programmable photonic integrated circuits offer exciting opportunities for optoelectronic signal processing, computing and communications in a number of emerging applications in classical and quantum photonics. In this work, we show the array-level demonstration of tunable couplers and phase shifters with capacitive electrostatic microelectromechanical actuators in a recirculating mesh network. The overall fabrication process is compatible with the conventional wafer-level passive silicon photonics platform. Extremely low unit-level standby power consumption of <10 femtowatts and reconfiguration energy of <40 picojoules with <11 V programming voltages offer well-balanced, scalable routes for efficient phase and amplitude modulation of the guided lightwaves with sub-decibel optical losses. The extinction ratios of the continuously tunable directional coupler exceed 30 dB. Full 2π-phase shifting can be achieved with a modulation efficiency of less than 0.075 V cm and a phase-dependent insertion-loss variation of 0.01 dB.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the plots and findings within this paper are available from the corresponding authors upon reasonable request.
References
Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).
Pérez, D., Gasulla, I. & Capmany, J. Programmable multifunctional integrated nanophotonics. Nanophotonics 7, 1351–1371 (2018).
Miller, D. A. B. Self-configuring universal linear optical component [invited]. Photon. Res. 1, 1–15 (2013).
Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021).
Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Prabhu, M. et al. Accelerating recurrent Ising machines in photonic integrated circuits. Optica 7, 551–558 (2020).
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).
Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).
Fandiño, J. S., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photon. 11, 124–129 (2017).
Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K.-J. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).
Lu, L., Shen, L., Gao, W., Zhou, L. & Chen, J. Reconfigurable silicon photonic processor based on SCOW resonant structures. IEEE Photon. J. 11, 6603312 (2019).
Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).
Earnshaw, M. P., Cappuzzo, M. A., Chen, E., Gomez, L. & Wong-Foy, A. Ultra-low power thermo-optic silica-on-silicon waveguide membrane switch. Electron. Lett. 43, 393–394 (2007).
Nejadriahi, H., Yu, P., Pappert, S. & Fainman, Y. Efficient and compact thermo-optic phase shifter in silicon-rich silicon nitride. Opt. Lett. 46, 4646–4649 (2021).
Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photon. 16, 59–65 (2021).
Han, J. H. et al. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photon. 11, 486–490 (2017).
Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photon. 11, 482–485 (2017).
Liu, W. et al. A fully reconfigurable photonic integrated signal processor. Nat. Photon. 10, 190–195 (2016).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2018).
Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).
Seok, T. J., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. Wafer-scale silicon photonic switches beyond die size limit. Optica 6, 490–494 (2019).
Zhang, X., Kwon, K., Henriksson, J., Luo, J. & Wu, M. C. A large-scale microelectromechanical-systems-based silicon photonics LiDAR. Nature 603, 253–258 (2022).
Yasuda, H. et al. Mechanical computing. Nature 598, 39–48 (2021).
Edinger, P. et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett. 46, 5671–5674 (2021).
Henriksson, J. et al. Digital silicon photonic MEMS phase-shifter. In 2018 International Conference on Optical MEMS and Nanophotonics (OMN) 1–2 (IEEE, 2018).
Sattari, H. et al. Silicon photonic MEMS phase-shifter. Opt. Express 27, 18959–18969 (2019).
Schuck, C., Grottke, T., Hartmann, W. & Pernice, W. H. P. Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range. Opt. Express 29, 5525–5537 (2021).
Ramey, C. et al. Dual slot-mode NOEM phase shifter. Opt. Express 29, 19113–19119 (2021).
Quack, N. et al. Integrated silicon photonic MEMS. Microsyst. Nanoeng. 9, 27 (2023).
Edinger, P. et al. Vacuum-sealed silicon photonic MEMS tunable ring resonator with an independent control over coupling and phase. Opt. Express 31, 6540–6551 (2023).
Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).
Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071–38086 (2019).
Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 636 (2017).
Siew, S. Y. et al. Review of silicon photonics technology and platform development. J. Lightwave Technol. 39, 4374–4389 (2021).
Singer, N. C. & Seering, W. P. Preshaping command inputs to reduce system vibration. J. Dyn. Syst., Meas., Control 112, 76–82 (1990).
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).
Yap, K. P. et al. Correlation of scattering loss, sidewall roughness and waveguide width in silicon-on-insulator (SOI) ridge waveguides. J. Lightwave Technol. 27, 3999–4008 (2009).
Okamoto, K. Fundamentals of Optical Waveguides (Academic Press, 2006).
Hwang, H. Y. et al. Flip chip packaging of digital silicon photonics MEMS switch for cloud computing and data centre. IEEE Photon. J. 9, 2900210 (2017).
Jo, G. et al. Wafer-level hermetically sealed silicon photonic MEMS. Photon. Res. 10, A14–A21 (2022).
Samani, A. et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt. Express 27, 10456–10471 (2019).
Watts, M. R. et al. Adiabatic thermo-optic Mach–Zehnder switch. Opt. Lett. 38, 733–735 (2013).
Fang, Q. et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon. Technol. Lett. 23, 525–527 (2011).
Goh, T. et al. Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silica-based planar lightwave circuit technology. J. Lightwave Technol. 19, 371–379 (2001).
Möller, B. A., Jensen, L., Laurent-Lund, C. & Thirstrup, C. Silica-waveguide thermooptic phase shifter with low power consumption and low lateral heat diffusion. IEEE Photon. Technol. Lett. 5, 1415–1418 (1993).
Joo, J., Park, J. & Kim, G. Cost-effective 2×2 silicon nitride Mach-Zehnder interferometric (MZI) thermo-optic switch. IEEE Photon. Technol. Lett. 30, 740–743 (2018).
Leenheer, A. J., Michael, C. P., Eichenfield, M., Stanfield, P. R. & Sims, R. CMOS-compatible, piezo-optomechanically tunable photonics for visible wavelengths and cryogenic temperatures. Opt. Express 27, 28588–28605 (2019).
Zhang, W. et al. High bandwidth capacitance efficient silicon MOS modulator. J. Lightwave Technol. 39, 201–207 (2021).
Fujikata, J., Takahashi, M., Takahashi, S., Horikawa, T. & Nakamura, T. High-speed and high-efficiency Si optical modulator with MOS junction, using solid-phase crystallization of polycrystalline silicon. Jpn. J. Appl. Phys. 55, 042202 (2016).
Azadeh, S. S. et al. Low Vπ silicon photonics modulators with highly linear epitaxially grown phase shifters. Opt. Express 23, 23526–23550 (2015).
Yong, Z. et al. U-shaped PN junctions for efficient silicon Mach-Zehnder and microring modulators in the O-band. Opt. Express 25, 8425–8439 (2017).
Thomson, D. J. et al. 50-Gb/s silicon optical modulator. IEEE Photon. Technol. Lett. 24, 234–236 (2012).
Lin, J., Sepehrian, H., Rusch, L. A. & Shi, W. Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation. Opt. Express 27, 5610–5619 (2019).
Zanzi, A. et al. Alignment tolerant, low voltage, 0.23 V cm, push-pull silicon photonic switches based on a vertical pn junction. Opt. Express 27, 32409–32426 (2019).
Streshinsky, M. et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt. Express 21, 30350–30357 (2013).
Dong, P., Chen, L. & Chen, Y. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt. Express 20, 6163–6169 (2012).
Ahmed, A. N. R. et al. High-efficiency lithium niobate modulator for K band operation. APL Photonics 5, 091302 (2020).
Rao, A. et al. High-performance and linear thin-film lithium niobate Mach–Zehnder modulators on silicon up to 50 GHz. Opt. Lett. 41, 5700–5703 (2016).
Weigel, P. O. et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt. Express 26, 23728–23739 (2018).
Xu, M. et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform. APL Photonics 4, 100802 (2019).
Rao, A. et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon. Opt. Express 23, 22746–22752 (2015).
Li, X. P., Chen, K. X. & Wang, L. F. Compact and electro-optic tunable interleaver in lithium niobate thin film. Opt. Lett. 43, 3610–3613 (2018).
Jin, M., Chen, J., Sua, Y., Kumar, P. & Huang, Y. Efficient electro-optical modulation on thin-film lithium niobate. Opt. Lett. 46, 1884–1887 (2021).
Chen, G. et al. Compact 100GBaud driverless thin-film lithium niobate modulator on a silicon substrate. Opt. Express 30, 25308–25317 (2022).
Thiessen, T. et al. 30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators. Opt. Express 27, 102–109 (2019).
Li, Q., Han, J.-H., Ho, C. P., Takagi, S. & Takenaka, M. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III-V/Si hybrid MOS phase shifter. Opt. Express 26, 35003–35012 (2018).
Takenaka, M. et al. III–V/Si hybrid MOS optical phase shifter for Si photonic integrated circuits. J. Lightwave Technol. 37, 1474–1483 (2019).
Tang, H. et al. Modulation bandwidth improvement of III-V/Si hybrid MOS optical modulator by reducing parasitic capacitance. Opt. Express 30, 22848–22859 (2022).
Rios, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).
Von Keitz, J. et al. Reconfigurable nanophotonic cavities with nonvolatile response. ACS Photonics 5, 4644–4649 (2018).
Fang, Z. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nat. Nanotechnol. 17, 842–848 (2022).
Ríos, C. et al. Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials. PhotoniX 3, 26 (2022).
Pruessner, M. W., Park, D., Stievater, T. H., Kozak, D. A. & Rabinovich, W. S. Broadband opto-electro-mechanical effective refractive index tuning on a chip. Opt. Express 24, 13917–13930 (2016).
Ikeda, T. & Hane, K. A tunable notch filter using microelectromechanical microring with gap-variable busline coupler. Opt. Express 21, 22034–22042 (2013).
Chu, H. M. & Hane, K. A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides. IEEE Photon. Technol. Lett. 26, 1411–1413 (2014).
Acknowledgements
This research project was partially supported by the Samsung Research Funding & Incubation Center of Samsung Electronics under project no. SRFC-IT2002-04. This work was further supported by the National Research Foundation of Korea under Grant NRF-2020M3F6A1082703. The devices were fabricated at the National Nanofab Center (NNFC), South Korea. We thank J.-B. You for discussions regarding the fabrication process at NNFC.
Author information
Authors and Affiliations
Contributions
D.U.K., Y.J.P., D.Y.K. and Y.J. contributed equally to the manuscript. D.U.K. contributed to the optical simulations of the devices. Y.J.P., D.Y.K., D.U.K. and Y.J. contributed to the layout design of the chip. D.U.K., Y.J.P., Y.J., D.Y.K., M.G.L., M.S.H., M.J.H., D.J.C. and Y.R. contributed to the characterization of the devices. Y.J. contributed to the mechanical simulation and electrical measurement. S.H. and K.Y. jointly conceived the idea of the project, supervised the project and wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Lin Chang, Olav Solgaard and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Performance comparisons of PPIC platforms with experimental demonstrations with either array-level or unit-level.
a, b, Performance comparisons of PPIC platforms with experimental demonstrations with either array-level or unit-level; Static power and switching energy per phase shifter device (optical loss in parentheses) (a), Optical loss and Lπ length of the phase shifter devices (response time in parentheses) (b). In these figures, each data point represents the best combination of specifications selected from all relevant references pertaining to that specific platform. Therefore, it should be noted that the actual performances of the individual references are inferior to what is illustrated in the figures except for our platform. The references are listed in Extended Data Table 2.
Supplementary information
Supplementary Information
Supplementary Sections 1–10, Figs. 1–14, Tables 1 and 2 and discussion.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kim, D.U., Park, Y.J., Kim, D.Y. et al. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photon. 17, 1089–1096 (2023). https://doi.org/10.1038/s41566-023-01327-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01327-5
This article is cited by
-
Harnessing the capabilities of VCSELs: unlocking the potential for advanced integrated photonic devices and systems
Light: Science & Applications (2024)