Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Luminescent concentrator design for displays with high ambient contrast and efficiency


A key display characteristic is its efficiency (emitted light power divided by input power). Although display efficiencies are being improved through emissive (for example, quantum dot and organic light-emitting) display designs, which remove the highly inefficient colour filters found in traditional liquid crystal displays, polarization filters, which block about 50% light, remain necessary to inhibit ambient light reflection. We introduce a luminescent concentrator design to replace both colour and polarization filters. Narrow-band, large-Stokes-shift, CdSe/CdS quantum dot emitters are embedded in a luminescent concentrator pixel element with a small top aperture. The remainder of the top surface is coated black, reducing ambient light reflection. A single pixel demonstrates an extraction efficiency of 40.9% from a pixel with an aperture opening of 11.0%. A simple proof-of-concept multipixel array is demonstrated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pixel design and component optical properties.
Fig. 2: Pixel excitation and emission and extraction efficiency as a function of design parameters.
Fig. 3: Micropixel array design, fabrication and optical properties.
Fig. 4: Micropixel addressing.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.


  1. Sabnis, R. W. Color filter technology for liquid crystal displays. Displays 20, 119–129 (1999).

    Article  Google Scholar 

  2. Luo, Z., Zhang, G., Zhu, R., Gao, Y. & Wu, S.-T. Polarizing grating color filters with large acceptance angle and high transmittance. Appl. Opt. 55, 70–76 (2016).

    Article  ADS  Google Scholar 

  3. Yang, C. et al. Compact multilayer film structure for angle insensitive color filtering. Sci. Rep. 5, 9285 (2015).

    Article  Google Scholar 

  4. Si, G. Y., Leong, E. S. P., Danner, A. J. & Teng, J. H. Plasmonic coaxial Fabry-Pérot nanocavity color filter. In Proc. SPIE 7757, Plasmonics: Metallic Nanostructures and Their Optical Properties VIII 77573F (SPIE, 2010).

  5. Xiao, T. P. et al. Diffractive spectral-splitting optical element designed by adjoint-based electromagnetic optimization and fabricated by femtosecond 3D direct laser writing. ACS Photon. 3, 886–894 (2016).

    Article  Google Scholar 

  6. Kim, G., Dominguez-Caballero, J. A., Lee, H., Friedman, D. J. & Menon, R. Increased photovoltaic power output via diffractive spectrum separation. Phys. Rev. Lett. 110, 123901 (2013).

    Article  ADS  Google Scholar 

  7. Wang, P. & Menon, R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics. Optica 2, 933–939 (2015).

    Article  ADS  Google Scholar 

  8. Lee, K. T., Seo, S. & Guo, L. J. High-color-purity subtractive color filters with a wide viewing angle based on plasmonic perfect absorbers. Adv. Opt. Mater. 3, 347–352 (2015).

    Article  Google Scholar 

  9. Shu, Y. et al. Quantum dots for display applications. Angew. Chem. Int. Ed. 59, 22312–22323 (2020).

    Article  Google Scholar 

  10. Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S.-T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Sci. Appl. 9, 105 (2020).

    Article  ADS  Google Scholar 

  11. Chen, H., Tan, G. & Wu, S.-T. Ambient contrast ratio of LCDs and OLED displays. Opt. Express 25, 33643–33656 (2017).

    Article  ADS  Google Scholar 

  12. Kelley, E. F., Lindfors, M. & Penczek, J. Display daylight ambient contrast measurement methods and daylight readability. J. Soc. Inf. Disp. 14, 1019–1030 (2006).

    Article  Google Scholar 

  13. Bennett, S. & Trapani, G. Contrast enhancement of LED, vaccum fluorescent and plasma displays with circular polarizing filters. Displays 5, 159–164 (1984).

    Article  Google Scholar 

  14. Singh, R., Narayanan Unni, K. N., Solanki, A. & Deepak Improving the contrast ratio of OLED displays: an analysis of various techniques. Opt. Mater. 34, 716–723 (2012).

    Article  ADS  Google Scholar 

  15. Chen, O. et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12, 445–451 (2013).

    Article  ADS  Google Scholar 

  16. Kim, H.-J., Shin, M.-H., Lee, J.-Y., Kim, J.-H. & Kim, Y.-J. Realization of 95% of the Rec 2020 color gamut in a highly efficient LCD using a patterned quantum dot film. Opt. Express 25, 10724–10734 (2017).

    Article  ADS  Google Scholar 

  17. Meinardi, F. et al. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots. Nat. Photon. 11, 177–185 (2017).

    Article  ADS  Google Scholar 

  18. Batchelder, J. S., Zewai, A. H. & Cole, T. Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation. Appl. Opt. 18, 3090–3110 (1979).

    Article  ADS  Google Scholar 

  19. Debije, M. G. & Verbunt, P. P. C. Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2, 12–35 (2012).

    Article  Google Scholar 

  20. Bronstein, N. D. et al. Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photon. 2, 1576–1583 (2015).

    Article  Google Scholar 

  21. Babar, S. & Weaver, J. H. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477–481 (2015).

    Article  ADS  Google Scholar 

  22. Li, C. et al. Large Stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci. Rep. 5, 17777 (2016).

    Article  ADS  Google Scholar 

  23. Zhao, H. et al. Gram-scale synthesis of carbon quantum dots with a large Stokes shift for the fabrication of eco-friendly and high-efficiency luminescent solar concentrators. Energy Environ. Sci. 14, 396–406 (2021).

    Article  Google Scholar 

  24. Tang, J., Sakamoto, M., Ohtaa, H. & Saitow, K.-I. 1% defect enriches MoS2 quantum dot: catalysis and blue luminescence. Nanoscale 12, 4352–4358 (2020).

    Article  Google Scholar 

  25. Peng, X. et al. Liquid nitrogen passivation for deep-blue perovskite quantum dots with nearly unit quantum yield. J. Phys. Chem. C 126, 1017–1025 (2022).

    Article  Google Scholar 

  26. Bronstein, N. D. et al. Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ACS Nano 8, 44–53 (2014).

    Article  Google Scholar 

  27. Yablonovitch, E. Thermodynamics of the fluorescent planar concentrator. J. Opt. Soc. Am. 70, 1362–1363 (1980).

    Article  ADS  Google Scholar 

  28. Wilton, S. R. et al. Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. Opt. Express 22, A35–A43 (2014).

    Article  ADS  Google Scholar 

  29. Sahin, D., Ilan, B. & Kelley, D. F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J. Appl. Phys. 110, 033108 (2011).

    Article  ADS  Google Scholar 

  30. Boher, P., Leroux, T., Bignon, T. & Blanc, P. Color display evaluation vs. viewing angle using L* a* b* color space and Fourier-optics measurements. J. Inf. Disp. 12, 179–190 (2011).

    Article  Google Scholar 

  31. Lim, Y. J. et al. Viewing angle controllable liquid crystal display with high transmittance. Opt. Express 18, 6824–6830 (2010).

    Article  ADS  Google Scholar 

  32. Boher, P., Leroux, T., Collomb-Patton, V. & Bignon, T. Optical characterization of OLED displays. J. Soc. Inf. Disp. 23, 429–437 (2015).

    Article  Google Scholar 

  33. Mori, H. The wide view (WV) film for enhancing the field of view of LCDs. J. Disp. Technol. 1, 179–186 (2005).

    Article  ADS  Google Scholar 

  34. Barycka, I. & Zubel, I. Silicon anisotropic etching in KOH-isopropanol etchant. Sens. Actuators A Phys. 48, 229–238 (1995).

    Article  Google Scholar 

  35. Mitjà, C. & Escofet, J. LCD displays performance comparison by MTF measurement using the white noise stimulus method. In Proc. SPIE 7867, Image Quality and System Performance VIII 78670I (SPIE, 2011).

  36. Kang, T. et al. Minimizing the fluorescence quenching caused by uncontrolled aggregation of CdSe/CdS core/shell quantum dots for biosensor applications. Sens. Actuators B Chem. 222, 871–878 (2016).

    Article  Google Scholar 

  37. Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019).

    Article  ADS  Google Scholar 

Download references


This work was supported by the US Department of Energy ‘Photonics at Thermodynamic Limits’ Energy Frontier Research Center under grant DE-SC0019140.

Author information

Authors and Affiliations



O.S.C. and M.A.Y., under the supervision of P.V.B. and R.G.N., respectively, designed the study. O.S.C. and M.A.Y. performed the experiments, analysed and interpreted the data and co-wrote the manuscript. B.A.K., Z.N., J.K.S. and A.P.A. provided the QDs. H.C. helped with the optical characterization setup. C.J.B. designed the circuit board for illumination. J.H. advised on the modelling as well as the experimental setup and interpretation. L.X. advised and helped develop the procedures for QD encapsulation in the polymer. All authors reviewed the manuscript.

Corresponding author

Correspondence to Paul V. Braun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sergio Brovelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5.

Supplementary Video 1

Video showing pixels being sequentially addressed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cifci, O.S., Yoder, M.A., Xu, L. et al. Luminescent concentrator design for displays with high ambient contrast and efficiency. Nat. Photon. 17, 872–877 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing