Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic monitoring of oscillatory enzyme activity of individual live bacteria via nanoplasmonic optical antennas

Abstract

Outer membrane vesicles (OMVs) are extracellular structures derived from the outer membrane of bacteria. They carry diverse cargos such as proteins, nucleic acids and enzymes, which are released by bacteria to communicate with each other and with host cells. Understanding the role of OMVs as carriers of signalling enzymes provides insights into intercellular communication, pathogenesis and biofilm formation, among others. Although fluorescence-based techniques have been employed to study vesicles, real-time live monitoring of enzyme-based cellular communication has remained challenging due to undesired effects of photobleaching and interference from labelling agents. Here we report label-free dynamic monitoring of the oscillatory activity of the enzyme azoreductase (AzoR) in individual live bacteria via nanoplasmonic optical antennas. Our nanoplasmonic antennas consist of gold nanorods modified with black hole quencher molecules (BHQ-3), whose scattering cross-section is modulated by the presence of AzoR. The antennas enable long-term (several hours) and distance-dependent (up to 3 μm) detection of AzoR via OMVs released by individual live bacteria. We observe periodic oscillatory enzyme activity in different living environments and at different stages of bacterial growth. We also found that oscillatory enzyme activity exhibits heterogeneous features due to the coupling of oscillation signals between neighbouring bacteria. The dynamic monitoring of signalling enzymes paves the way for a better understanding of mechanisms of bacterial communication, pathogenesis and drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Understanding bacterial cell–cell communication via the observation of oscillatory enzyme activity by innovative biological sensing mechanism of nanoplasmonic optical antennas.
Fig. 2: Distance-dependent detection of enzyme release from a single bacterium by nanoplasmonic optical antennas.
Fig. 3: Real-time detection of oscillatory enzyme activity of a single bacterium.
Fig. 4: Real-time detection of oscillation coupling of enzyme activity in communicating single bacteria.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are reported in the main text and Supplementary Information. Source Data are available from the corresponding authors upon reasonable request.

References

  1. Kaparakis-Liaskos, M. & Ferrero, R. L. Immune modulation by bacterial outer membrane vesicles. Nat. Rev. Immunol. 15, 375–387 (2015).

    Article  Google Scholar 

  2. Wang, X., Thompson, C. D., Weidenmaier, C. & Lee, J. C. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform. Nat. Commun. 9, 1379 (2018).

    Article  ADS  Google Scholar 

  3. Yuan, J. et al. Safe Staphylococcal platform for the development of multivalent nanoscale vesicles against viral infections. Nano Lett. 18, 725–733 (2018).

    Article  ADS  Google Scholar 

  4. Phan, N. T. N., Li, X. & Ewing, A. G. Measuring synaptic vesicles using cellular electrochemistry and nanoscale molecular imaging. Nat. Rev. Chem. 1, 0048 (2017).

    Article  Google Scholar 

  5. Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Meth. 18, 1013–1026 (2021).

    Article  Google Scholar 

  6. Poskanzer, K. E., Marek, K. W., Sweeney, S. T. & Davis, G. W. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003).

    Article  ADS  Google Scholar 

  7. Pasquina-Lemonche, L. et al. The architecture of the Gram-positive bacterial cell wall. Nature 582, 294–297 (2020).

    Article  ADS  Google Scholar 

  8. Alsteens, D., Trabelsi, H., Soumillion, P. & Dufrene, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 4, 2926 (2013).

    Article  ADS  Google Scholar 

  9. Fantner, G. E., Barbero, R. J., Gray, D. S. & Belcher, A. M. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat. Nanotechnol. 5, 280–285 (2010).

    Article  ADS  Google Scholar 

  10. Benn, G., Pyne, A. L. B., Ryadnov, M. G. & Hoogenboom, B. W. Imaging live bacteria at the nanoscale: comparison of immobilisation strategies. Analyst 144, 6944–6952 (2019).

    Article  ADS  Google Scholar 

  11. Valencia-Burton, M., McCullough, R. M., Cantor, C. R. & Broude, N. E. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Meth. 4, 421–427 (2007).

    Article  Google Scholar 

  12. Ma, Y. et al. A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat. Biotechnol. 35, 363–370 (2017).

    Article  Google Scholar 

  13. Boden, A. et al. Volumetric live cell imaging with three-dimensional parallelized RESOLFT microscopy. Nat. Biotechnol. 39, 609–618 (2021).

    Article  Google Scholar 

  14. Gahlmann, A. & Moerner, W. E. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12, 9–22 (2014).

    Article  Google Scholar 

  15. Farrell, M. V. et al. Protein-PAINT: superresolution microscopy with signaling proteins. Sci. Signal. 15, eabg9782 (2022).

    Article  Google Scholar 

  16. Kimura, T. et al. Imaging live cell in micro-liquid enclosure by X-ray laser diffraction. Nat. Commun. 5, 3052 (2014).

    Article  ADS  Google Scholar 

  17. Stevenson, T. J. Epigenetic regulation of biological rhythms: an evolutionary ancient molecular timer. Trends Genet. 34, 90–100 (2018).

    Article  Google Scholar 

  18. Leng, N. et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat. Meth. 12, 947–950 (2015).

    Article  Google Scholar 

  19. Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220–223 (2011).

    Article  ADS  Google Scholar 

  20. Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).

    Article  Google Scholar 

  21. Martí Ruiz, M. C. et al. Circadian oscillations of cytosolic free calcium regulate the Arabidopsis circadian clock. Nat. Plants 4, 690–698 (2018).

    Article  Google Scholar 

  22. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  ADS  Google Scholar 

  23. Oh, G. et al. Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging. Nat. Commun. 9, 644 (2018).

    Article  ADS  Google Scholar 

  24. Quirk, C. R. et al. Precisely timed theta oscillations are selectively required during the encoding phase of memory. Nat. Neurosci. 24, 1614–1627 (2021).

    Article  Google Scholar 

  25. Raj, A. & Van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  Google Scholar 

  26. Dundas, A. A. et al. Validating a predictive structure–property relationship by discovery of novel polymers which reduce bacterial biofilm formation. Adv. Mater. 31, 1903513 (2019).

    Article  Google Scholar 

  27. Lenz, P. & Sogaard-Andersen, L. Temporal and spatial oscillations in bacteria. Nat. Rev. Microbiol. 9, 565–577 (2011).

    Article  Google Scholar 

  28. Jenal, U., Reinders, A. & Lori, C. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15, 271–284 (2017).

    Article  Google Scholar 

  29. Smits, W. K., Kuipers, O. P. & Veening, J. W. Phenotypic variation in bacteria: the role of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006).

    Article  Google Scholar 

  30. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    Article  Google Scholar 

  31. Moradali, M. F. & Rehm, B. H. Bacterial biopolymers: from pathogenesis to advanced materials. Nat. Rev. Microbiol. 18, 195–210 (2020).

    Article  Google Scholar 

  32. Pei, J. F. et al. Diurnal oscillations of endogenous H2O2 sustained by p66Shc regulate circadian clocks. Nat. Cell Biol. 21, 1553–1564 (2019).

    Article  Google Scholar 

  33. Nie, L. et al. Dual-site fluorescent probe to monitor intracellular nitroxyl and GSH-GSSG oscillations. Anal. Chem. 91, 4451–4456 (2019).

    Article  Google Scholar 

  34. Etter, G. et al. Optogenetic gamma stimulation rescues memory impairments in an Alzheimer’s disease mouse model. Nat. Commun. 10, 5322 (2019).

    Article  ADS  Google Scholar 

  35. Zutshi, I. et al. Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerated oscillation frequencies. Curr. Biol. 28, 1179–1188 (2018).

    Article  Google Scholar 

  36. Wang, S. W. & Tang, L. H. Emergence of collective oscillations in adaptive cells. Nat. Commun. 10, 5613 (2019).

    Article  ADS  Google Scholar 

  37. Ye, W. et al. Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features. J. Am. Chem. Soc. 140, 17901–17906 (2018).

    Article  Google Scholar 

  38. Xin, H., Namgung, B. & Lee, L. P. Nanoplasmonic optical antennas for life sciences and medicine. Nat. Rev. Mater. 3, 228–243 (2018).

    Article  ADS  Google Scholar 

  39. Liu, G. L., Long, Y. T., Choi, Y., Kang, T. & Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat. Meth. 4, 1015–1017 (2007).

    Article  Google Scholar 

  40. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nat. Meth. 7, 442–453 (2008).

    Article  Google Scholar 

  41. Xin, H. et al. Quantum biological tunnel junction for electron transfer imaging in live cells. Nat. Commun. 10, 3245 (2019).

    Article  ADS  Google Scholar 

  42. Tsargorodska, A. et al. Strong coupling of localized surface plasmons to excitons in light-harvesting complexes. Nano Lett. 16, 6850–6856 (2016).

    Article  ADS  Google Scholar 

  43. Misal, S. A. & Gawai, K. R. Azoreductase: a key player of xenobiotic metabolism. Bioresour. Bioprocess. 5, 17 (2018).

    Article  Google Scholar 

  44. Tian, Y. et al. In-situ imaging of azoreductase activity in the acute and chronic ulcerative colitis mice by a near-infrared fluorescent probe. Anal. Chem. 91, 10901–10907 (2019).

    Article  Google Scholar 

  45. Qing, G. et al. Natural and engineered bacterial outer membrane vesicles. Biophys. Rep. 5, 184–198 (2019).

    Article  Google Scholar 

  46. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    Article  Google Scholar 

  47. Salvachúa, D. et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl Acad. Sci. USA 117, 9302–9310 (2020).

    Article  ADS  Google Scholar 

  48. Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163 (2010).

    Article  Google Scholar 

  49. Mittelbrunn, M. & Sánchez-Madrid, F. Intercellular communication: diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13, 328–335 (2012).

    Article  Google Scholar 

  50. Koslov, M. M. & Markin, V. S. A theory of osmotic lysis of lipid vesicles. J. Theor. Biol. 109, 17–39 (1984).

    Article  ADS  Google Scholar 

  51. Zhao, X. et al. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping. Nano Lett. 1, 402–410 (2021).

    Google Scholar 

  52. Vogel, S., Tank, M. & Goodyear, N. Variation in detection limits between bacterial growth phases and precision of an ATP bioluminescence system. Lett. Appl. Microbiol. 58, 370–375 (2014).

    Article  Google Scholar 

  53. Segall-Shapiro, T. H., Sontag, E. D. & Voigt, C. A. Engineered promoters enable constant gene expression at any copy number in bacteria. Nat. Biotechnol. 36, 352–358 (2018).

    Article  Google Scholar 

  54. Roier, S. et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 7, 10515 (2016).

    Article  ADS  Google Scholar 

  55. Ito, K. et al. Three-dimensional structure of AzoR from Escherichia coli: an oxidereductase conserved in microorganisms. J. Biol. Chem. 281, 20567–20576 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 62135005, 61975065, 32271405 and 12204196 to B.L., H.X., T.P. and Y.S., respectively), Guangdong Basic and Applied Basic Research Foundation (grant no. 2022B1515120012 to H.X.) and Science and Technology Program of Guangzhou (grant no. 202201010370 to T.P.).

Author information

Authors and Affiliations

Authors

Contributions

H.X. and L.P.L. conceptualized the work, D.L., B.L. and H.X. designed the study. D.L., G.Z., D.W., J.X. and T.P. performed the experiments. Y.S. and X.L. performed simulations. D.L., B.L., H.X. and L.P.L. wrote the paper. All the authors contributed to the data analysis, discussion and manuscript preparation.

Corresponding authors

Correspondence to Baojun Li, Luke P. Lee or Hongbao Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Shaopeng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Notes 1–4 and refs. 1–9.

Supplementary Video

Video showing the measurement for a single bacterium.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Zhu, G., Li, X. et al. Dynamic monitoring of oscillatory enzyme activity of individual live bacteria via nanoplasmonic optical antennas. Nat. Photon. 17, 904–911 (2023). https://doi.org/10.1038/s41566-023-01265-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01265-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing