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Soliton pulse pairs at multiple colours in 
normal dispersion microresonators

Zhiquan Yuan    1,4, Maodong Gao    1,4, Yan Yu1,4, Heming Wang    1,2,4, 
Warren Jin2,3,4, Qing-Xin Ji    1, Avi Feshali3, Mario Paniccia3, John Bowers    2    
& Kerry Vahala    1 

Soliton microcombs are helping to advance the miniaturization of a 
range of comb systems. These combs mode lock through the formation 
of short temporal pulses in anomalous dispersion resonators. Here, a new 
microcomb is demonstrated that mode locks through the formation of 
pulse pairs in coupled normal dispersion resonators. Unlike conventional 
microcombs, pulses in this system cannot exist alone, and instead phase 
lock in pairs wherein pulses in each pair feature different optical spectra. The 
pairwise mode-locking modality extends to multiple pulse pairs and beyond 
two rings, and it greatly constrains mode-locking states. Two- (bipartite) and 
three-ring (tripartite) states containing many pulse pairs are demonstrated, 
including crystal states. Pulse pairs can also form at recurring spectral 
windows. We obtained the results using an ultra-low-loss Si3N4 platform 
that has not previously produced bright solitons on account of its inherent 
normal dispersion. The ability to generate multicolour pulse pairs over 
multiple rings is an important new feature for microcombs. It can extend 
the concept of all-optical soliton buffers and memories to multiple storage 
rings that multiplex pulses with respect to soliton colour and that are 
spatially addressable. The results also suggest a new platform for the study 
of topological photonics and quantum combs.

Microresonator solitons exist through a balance of optical nonlin-
earity and dispersion, which must be anomalous for bright soliton 
generation1–3. Moreover, microresonators must feature high optical 
Q factors for low pump power operation of the resulting microcomb. 
Although these challenges have been addressed at telecommunication 
wavelengths using a range of material systems1, ultra-low-loss Si3N4 
resonators4,5 do not yet support bright solitons as their waveguides 
feature normal dispersion4. Furthermore, all resonator materials are 
dominated by normal dispersion at shorter wavelengths. Although it 
is possible to form normal dispersion combs6, the temporally short 
pulse nature and highly reproducible spectral envelopes of anomalous 
dispersion soliton combs1 have generated keen interest in methods to 
induce anomalous dispersion for bright soliton generation in normal 

dispersion systems. Such methods have in common the engineering 
of dispersion through coupling of resonator mode families, including 
those associated with concentric resonator modes7,8, polarization9,10 or 
transverse modes11,12. As an aside, such coupled resonators have also 
been used to improve normal dispersion comb formation13,14 and to 
boost the power efficiency of bright combs15.

Here we engineer anomalous dispersion in ultra-low-loss Si3N4 
resonators by partially coupling resonators (Fig. 1a). Such geometry 
introduces unusual new features to bright soliton generation; for 
example, spectra resembling single soliton pulse microcombs form 
instead from coherent pulse pairs (Fig. 1a). The pulse pairs circulate 
in a mirror-image-like fashion in the coupled rings to form coherent 
comb spectra (Fig. 1b) with highly stable microwave beat notes (Fig. 1c).  
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Recurring spectral windows
Before addressing pulse-pair propagation in the two- and three-ring 
systems, the conventional mode-family coupling approach is consid-
ered7,8,10. A concentric resonator system is chosen as a representative 
example (upper-left panel, Fig. 2a). The characteristics of this system 
are identical to other methods. First, a phase-matching condition must 
be satisfied such that the absolute mode number of each ring (or each 
coupled mode) must be equal at the same optical frequency. This mode 
number determines the wavelength at which soliton formation is pos-
sible. Second, the free-spectral-range values (FSRA and FSRB) of the 
uncoupled mode families of rings A and B must be close in value com-
pared with their average FSR = (FSRA + FSRB)/2 so that phase matching 
occurs over a large number of modes. With these conditions satisfied, 
the resulting dispersion will be as illustrated schematically in Fig. 2a 
(lower panel, green curves). Comparisons with the uncoupled disper-
sion curves (centre dashed blue and red lines) show that anomalous 
dispersion is possible for the upper mode family branch.

Next consider the case in which two rings are placed side-by-side 
and coupled together (Fig. 2a, upper-right panel). The two ring cavi-
ties differ only in length, with ring B being slightly longer than ring A 
so that FSRA > FSRB. Considering the straight coupling section from a 
coupled-mode perspective, the modes of the two rings will strongly 
couple if they have matching wavevectors (or equivalently, resonance 
frequencies), whereas there are no requirements on mode number 
matching of the rings (that is, the mode number is not conserved). In 
comparison with the concentric ring configuration, this dramatically 
modifies the dispersion relation (Fig. 2a, lower panel, orange curves). 
Due to the loss of mode number conservation, inter-ring coupling 
pushes the resonance frequencies away from that of the individual rings 

The interaction of the pulses in the coupling section between the  
rings is shown to induce anomalous dispersion, which compensates for 
the overall normal dispersion of each ring. This pairwise compensation 
spectrally recurs, thereby opening multiple anomalous dispersion 
windows for the formation of multicolour soliton pairs. These windows 
can be engineered during resonator design. Furthermore, the spectral 
composition of each pulse in a pair is different. Figure 1b, for example, 
shows through- and drop-port spectra that reflect the distinct spectral 
compositions of pulses in rings A and B (Fig. 1a). This peculiar effect is 
also associated with Dirac solitons16 and it is shown that the two-ring 
pulse pair represents a new embodiment of a Dirac soliton as the under-
lying dynamical equation (see Methods) resembles the nonlinear 
Dirac equation in 1 + 1 dimensions. Pulse pairing is also extendable to 
higher-dimensional designs with additional normal dispersion rings. 
For example, in Fig. 1d–f, three pulses in three coupled rings alternately 
pair to compensate for the normal dispersion of each ring.

In what follows, we first study the dispersion of this system and 
compare it with past mode coupling methods. Experimental results, 
including dispersion measurement and comb formation, are then pre-
sented. Pairwise pulse formation is then studied in the time domain. In 
presenting the results, it is convenient to resolve the ambiguity created 
by pulse-pair spectra in two- and three-coupled rings that nonetheless 
resemble single-pulse soliton spectra. To accomplish this, we denote 
these cases as bipartite and tripartite soliton microcombs, respectively. 
The need for such nomenclature is made clear by the demonstration 
of multiple pulse-pair states, including a two-ring microcomb state 
containing four pulses, which behaves as a two-pulse soliton crystal, 
and a three-ring state with 12 pulses, which behaves as a four-pulse 
soliton crystal17.
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Fig. 1 | Soliton pulse pair generation in two- and three-coupled-ring 
microresonators. a, Schematic showing coherent pulse pairs that form a 
composite excitation. The inset is a photomicrograph of the two-coupled-ring 
resonator used in the experiments. Rings A and B are indicated. Scale bar, 1 mm. 
b, Simultaneous measurements of optical spectra collected from the through 
(pumping port) and drop ports in the coupled-ring resonator of a. The measured 
mode dispersion is also plotted. Two dispersive waves are observed at spectral 
locations corresponding to the phase matching condition, as indicated by 

the dispersion curve. c, Radiofrequency spectrum of microcomb beatnote. 
RBW, resolution bandwidth. d, Illustration of three-pulse generation in a 
three-coupled-ring microresonator wherein pulses alternately pair. The inset 
is a photomicrograph of the three-coupled-ring microresonator used in the 
experiments. Scale bar, 1 mm. e, Measurement of optical spectrum of the  
three pulse microcomb. The measured mode dispersion is also plotted.  
f, Radiofrequency spectrum of the microcomb beatnote.
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(blue and red dashed lines) at all frequency degeneracies, so that recur-
ring anomalous dispersion windows with period M = FSR/(FSRA − FSRB) 
now appear in the spectrum. These windows result from the spectral 
folding that occurs due to the frequency Vernier between the cavity 
resonances. As an aside, because the mode number is not conserved, 
modelling of this dispersion proceeds differently relative to the stand-
ard coupled-mode family approach (see Supplementary Information).

Dispersion measurements and soliton pulse pair 
generation
Two- and three-ring resonators consist of thin, single-mode Si3N4 wave-
guides (see the optical images in the insets of Fig. 1a,d). Bus waveguides 
provide external coupling. For the coupled two-ring device, the circum-
ference of ring A is 9.5 mm (FSR ≈ 20 GHz), and ring B is 0.5% longer than 
ring A. For the three-ring device, the right-most ring has a circumference 
of 9.5 mm, and each other ring is 0.3% longer than its neighbour to the 
right. The rings feature high intrinsic Q factors exceeding 75 × 106. Indi-
vidually, each ring does not support bright soliton formation at around 
1,550 nm due to the strong normal dispersion associated with the low 
confinement waveguide structure (see Methods and Extended Data 
Fig. 1). Past studies on similar single-ring structures have generated 
only dark pulse comb spectra4.

The measured frequency dispersion (green points) for the two-ring 
system is compared with theory (solid lines) in Fig. 2b. The dispersion 
of the three-ring resonator is discussed in Supplementary Section 2. 
Measurements are performed using a radiofrequency-calibrated inter-
ferometer in combination with a wavelength-tunable laser3. The cou-
pled resonators feature two frequency bands in which three anomalous 
dispersion windows are highlighted. At each window, soliton steps are 
observed when scanning the laser frequency over a cavity resonance. 
Magnified views of the steps are presented as insets in Fig. 2b. Extended 
scans are provided in Extended Data Fig. 2 including appearance of the 
standard thermal triangle associated with photo-thermal heating of the 
resonator. Operation at the longest and shortest wavelength windows 
(1,584.5 nm and 1,525.5 nm) was challenging due to the low power of the 
laboratory laser, and as a result the time duration of the soliton steps 
for these wavelengths is relatively shorter.

Analysis shows that the average frequency of the two bands (that is, 
ωμ ≡ (ωμ,+ + ωμ,−)/2) is given by the mode frequency for a length-averaged 
resonator at the same mode number (see Supplementary Section 1). This 
average frequency can be described by a second-order dispersion model:

ωμ ≈ ω0 + D1μ +
1
2D2μ2 (1)
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Fig. 2 | Mode number non-conservation coupling and dispersion for bright 
soliton formation. a, Dispersion properties for two resonator coupling 
schemes. Concentric rings (upper-left panel) induce coupling wherein the mode 
number is conserved. The centre blue and red dashed lines (lower panel) show 
that the resonance frequencies of the coupled rings have slightly different FSRs. 
A single coupling-induced gap is opened at their intersection (mode number M0), 
which corresponds to phase matching of the concentric ring modes. Two hybrid 
mode branches are thereby created (green curves) with a single anomalous 
dispersion window. In this work (top-right panel), inter-ring coupling occurs 
from resonance frequency matching instead of mode number matching (that is, 
mode number is not conserved). By contrast to the concentric case, dispersion 
is altered at all frequency degeneracies. Spectral folding (allowed by non-
conservation of mode number) is illustrated by the multiple dashed lines (lower 
panel) and induces multiple gaps. These recur with period M (set by the Vernier 
in the FSRs) creating multiple anomalous dispersion windows. b, Measured 
frequency dispersion of the coupled resonator (green circles) versus the relative 

mode number μ. Here D1/(2π) = 19.9766 GHz, and ω0 is chosen so that μ = 0 is 
at the crossing centre (1,552.3 nm). Multiple anomalous dispersion windows 
appear around μ = 0 and 400 for the upper branch, and μ = −200 and 200 for the 
lower branch. The anomalous dispersion windows near μ = −200, 0 and 200 have 
been highlighted. Solid curves are fittings and the colour refers to the fractional 
energy contribution from ring A. The averages of the upper and lower branch 
mode frequencies are plotted as orange circles and fitted by a second-order 
dispersion model (orange curve, described by equation (1)). The inset is the 
transmission observed when scanning a laser over resonances in the anomalous 
dispersion windows. Soliton steps are observed around μ = −200, 0 and 200.  
c, Measured relative frequency dispersion of the coupled resonator (green circles) 
versus μ. Here D2/(2π) = −283.0 kHz, and the other parameters are the same as in 
b. Solid curves are the theoretical fittings described by equation (2). Fitted mode 
frequency dispersion diagrams of the single rings without coupling are shown as 
red and blue lines.
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where ω0 is the mode frequency at μ = 0 and μ is a relative mode num-
ber referenced to the frequency degeneracy at 1,552.3 nm; D1 is the 
length-averaged FSR for the resonator at μ = 0; D2 = −cD2

1β2/ng is the 
second-order dispersion parameter at μ = 0, with group velocity disper-
sion β2 and waveguide group index ng. Averaging the frequencies 
removes the effect of the coupling entirely, and the resulting average 
dispersion (orange points in Fig. 2b) closely matches a parabolic-shaped 
dispersion curve (orange curve).

The effect of the coupling is made clearer by plotting the mode 
frequencies relative to the averaged frequency (that is, relative mode 
frequency ωμ,± − ωμ), as shown in Fig. 2c. The relative mode frequencies 
of uncoupled rings appear as straight lines. Their positive and negative 
slopes result from removing a linear component of dispersion in this 
plot given by the average FSR, D1. The mode number walk-off causes 
the lines to vertically wrap at ±D1/2. As the length of ring B is 0.5% longer 
than ring A, frequency degeneracy of the rings occurs every 200 ring A 
modes (or every 201 ring B modes). The introduction of coupling opens 
gaps at frequency degeneracies, regardless of whether the absolute 
mode number is matched.

Analysis shows that the gap widths equal 2G ≡ gcoLcoD1/π, where G is 
the half-gap-width in Hertz, gco is the coupling strength per unit length 
and Lco is the effective coupler length. The full dispersion relation is 
(see Supplementary Section 1):

ωμ,± = ωμ ±
D1
2π arccos [cos(gcoLco) cos (2πϵμ)] (2)

where ϵ = (LB − LA)/(LB + LA) = (2M)−1 is the length contrast of the rings, 
and LA (LB) is the length of ring A (B). For the current design ϵ = 1/401, and 
the gap is modulated with respect to mode number with period ϵ−1 = 401 

(corresponding to 8 THz in the spectrum). The small length contrast ϵ 
guarantees the wide spectral range of the anomalous dispersion win-
dow. Overall, there is very good agreement between the model and the 
measured data in Fig. 2b,c, and the fitting allows determination of key 
resonator parameters. The hybrid mode field distributions between 
two rings are studied in the Supplementary Section 1 and the fractional 
energy contribution from ring A (ηA is defined in Supplementary Sec-
tion 1) is used to colour the hybrid modes in Fig. 2b,c.

As an aside, the spectral gap is smaller at larger mode numbers, 
which is attributed to the wavelength dependence of gco, as shorter 
wavelength results in stronger mode confinement, and hence smaller 
coupling with the adjacent waveguide. When combined with the origi-
nal normal dispersion of each ring, the net dispersion for coupled sys-
tem remains anomalous at around μ = 0 and 400 for the upper branch, 
and at around μ = −200 and 200 for the lower branch.

Aside from the observation of soliton steps (Fig. 2b), microcomb 
spectra measured around 1,550 nm for the through (ring A) and drop 
(ring B) ports are presented in Fig. 1b. The experimental set-up is pro-
vided in Extended Data Fig. 3. The microcomb was stabilized by measur-
ing comb power from the through port and feeding back to the pump 
laser frequency, which controls the pump–cavity offset frequency18. 
The comb exhibits excellent stability (measurements of the comb 
spectra and repetition rate over 4 h of operation are provided in 
Extended Data Fig. 4). The theoretical pulse width of the comb spectra 
in the figure is estimated to be ~250 fs. Microcomb spectra measured 
at other pump–cavity offset frequencies, and using another device, 
are presented in Extended Data Fig. 5. Comb coherence and soliton 
pulse behaviour were confirmed in several ways. The radiofrequency 
spectrum of the soliton beatnote is presented in Fig. 1c. The soliton  
𝒮𝒮- and 𝒞𝒞-resonances19,20 were also measured using a vector network 
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resonator. a, Top, an illustration of the time evolution of the soliton pair inside 
the two rings during one round trip time; bottom, snapshots of the pulses at 
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position shifts as well as chirp compensation (III). The pulses exit the coupled 
region (IV) with position shifts and chirping compensated. b, Simulated pulse-

pair properties are plotted versus pulse position in each ring during one round 
trip. The two rings are aligned at the coupling region centre, and the surplus 
length in ring B is omitted in the figure. The yellow shaded area represents 
the coupling region. The quantities are, from top to bottom, the pulse timing 
difference (pulse centre-to-centre), linear chirp, peak power and theoretical 
pulse width τ. The blue (red) lines represent simulation results for the pulse in 
ring A (B). The dashed lines are analytical results from a linear coupling model 
(see Methods), and are consistent with simulation results.
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analyser. Plots of their relative frequencies versus laser-cavity detuning 
are given in Extended Data Fig. 6. Finally, time-domain autocorrelation 
measurements are also given in the Extended Data Fig. 6. Multiple pulse 
pair comb states are discussed in the next section, and autocorrelation 
measurements for these comb states are also included in Extended 
Data Fig. 6.

Through and drop port spectra correspond to pulses in rings 
A and B, respectively, and show that these pulses are both different 
from each other and deviate from the conventional sech2 shape of 
Kerr solitons. The through-port spectrum is stronger (weaker) than 
the drop port at shorter (longer) wavelengths. This is a result of this 
system representing a new version of the Dirac soliton16 (Methods). In 
Fig. 1b, two strong dispersive waves are observed near 1,526 nm and 
1,577 nm, where modes of the coupled resonator phase-match to the 
soliton comb. For comparison, the dispersion in the vicinity of the comb 
spectrum is overlaid in the figure. The dispersive waves broaden the 
soliton spectrum and provide higher power comb lines (1.5 μW on-chip 
power at shorter wavelength and 5.4 μW at longer wavelength), which 
is advantageous for application to optical frequency division21.

Pulse generation in the three-ring system is shown in Fig. 1d (see 
Supplementary Section 2 for the dispersion analysis). Figure 1e shows 
the soliton spectrum measured from the centre ring. The measured 

dispersion is also included in the figure. The pump laser wavelength 
is several nanometres away from the anomalous dispersion centre 
frequency and, as a result, the spectrum features only one dispersive 
wave at the shorter wavelength side. The radiofrequency spectrum 
of the soliton beatnote is presented in Fig. 1f, indicating good coher-
ence. Autocorrelation measurements for this device are presented in 
Extended Data Fig. 6.

Pulse pairs and multipartite states
Both autocorrelation measurements (Extended Data Fig. 6) and simula-
tions show that microcombs form as phase-locked pulse pairs, where 
the pulses have opposite phases. The pair viewpoint provides a power-
ful framework for visualization of mode locking that readily explains 
observable multiple pulse-pair states and higher-dimensional systems 
comprising multiple coupled cavities.

Simulations of pulse propagation in the two-ring system are pre-
sented in Fig. 3a. Here the ring FSRs and couplings are those of the 
experimental system studied in Fig. 2b,c, and excitation occurs for the 
mode μ = 0. As shown in Fig. 3b, each pulse undergoes shape, chirp and 
pulse width variations that repeat upon every round trip. Before enter-
ing the coupling region (point I in Fig. 3a), the chirp of both pulses has 
increased due to uncompensated Kerr nonlinearity from propagation 
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microresonator. e, Optical spectrum of a tripartite three-soliton state. The inset 
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f, Optical spectrum of a tripartite four-soliton crystal. The inset shows the 
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in normal dispersion waveguides of each ring. Pulse chirp is indicated 
in the lower panel of Fig. 3a, where the colour represents instantaneous 
frequency. The pulse in ring B (red) also lags behind its counterpart 
in ring A (blue) due to the difference in ring lengths; however, upon 
entering the coupling region (point II), the ring B (A) pulse accelerates 
(decelerates) and becomes the leading (lagging) pulse when exiting 
the coupling region (point III). The chirp of both pulses decreases 
through the coupling region. Upon exiting the coupling region, the 
pulses propagate in their respective waveguides (point IV) where chirp 
increases as the pulses circle back through point I. Detailed numerical 
simulations (see Methods) are used to further explore and confirm the 
pulse pair evolution (see Fig. 3b and Supplementary Video 1).

This picture of pairwise round-trip compensation of normal dis-
persion explains how compensation works for multipair systems, as 
well as for higher dimensions with additional ring cavities. Specifi-
cally, it constrains how comb states form. Consider the coupled-ring 
states in Fig. 4a,b, for example, wherein two pulse pairs circulate in 
a mirror-image-like fashion to form the observed spectra. Here, to 
reduce confusion with corresponding multipulse soliton systems, we 
adopt the nomenclature that a single pulse pair in a two-ring system 
is a bipartite single soliton (see Fig. 1a,b), whereas multipair states in a 
two-ring system are bipartite multisoliton systems. Accordingly, the 
states in Fig. 4a,b are bipartite two-soliton states. The state in Fig. 4b is 
moreover a bipartite two-soliton crystal. Autocorrelation characteriza-
tion for this bipartite crystal state is presented in Extended Data Fig. 
6 for comparison to single pulse pair state in the same figure. Notice 
that the requirements imposed on pulse pairing allow a one-to-one cor-
respondence between conventional multisoliton states and bipartite 
states, since the pulse configurations in each ring resonator mirror 
those of the neighbouring ring.

The same is true for higher-dimensional systems. For example, 
three pulses compensate normal dispersion by alternating their pair-
wise coupling (Fig. 1d). Moreover, the pairwise compensation works 
when additional pulses are added to each cavity. For example, meas-
urement of tripartite two- and three-soliton states, and a four-soliton 
crystal state (containing 6, 9 and 12 pulses, respectively) are presented 
in Fig. 4c–f. Notice that the measured comb line spacing (79.93 GHz) 
for the crystal state is four times the FSR of a single ring as is consistent 
with a conventional four-soliton crystal state. Backscattering inside 
the cavity and coupling to the external waveguide might contribute 
to this self-organization behaviour.

Discussion
In summary, we have observed a new type of microcavity soliton that 
mode locks as pulse pairs distributed spatially over multiple ring reso-
nators. The requirement to compensate overall normal dispersion of 
the rings requires that the pulses in each ring arrange themselves as a 
mirror image of the pulses in neighbouring rings. Partial coupling of 
the resonators creates a situation in which the ring resonator mode 
number is not conserved and this enables recurring spectral windows 
in which the pairs can be formed. The presented bright soliton results 
use the ultra-low-loss silicon nitride process that has previously been 
restricted to only dark pulse generation. This methodology can be 
generalized to other material platforms.

Critically, the combination of pulsed parametric oscillation 
and ultra-low optical loss in a fully complementary metal oxide 
semiconductor (CMOS) compatible platform brings a high level 
of integration complexity to many applications. More complex, 
optical-frequency-division systems and spectroscopy systems are 
possible using these short pulse combs. Comb dividers could also 
use the strong dispersive waves in the soliton spectrum, when locked 
to a cavity reference, to produce low-noise radio frequency signals. 
Meanwhile, high-Q factor in this platform will benefit quantum comb 
applications22–24 including squeezed quantum combs25,26. Here, the 
full CMOS compatibility and ultra-low-loss waveguides can readily 

facilitate chip integration of delay line and beam splitter functions 
that have been applied recently to create large cluster states by time 
domain multiplexing and entanglement27,28. It is also worth noting that 
the pulse pair systems demonstrated here exist across multiple coupled 
rings, suggesting connections to topological photonics29–31. Theo-
retical studies of topological phenomena in coupled-ring parametric 
oscillators showcase the range of intriguing phenomena that are pos-
sible32. Finally, the ability to distribute coherent pulses over multiple 
rings with individual taps and with simultaneous pulse formation at 
multiple wavelengths presents new opportunities for soliton science 
and microcomb applications, including new realizations optical buffers 
as originally proposed for coherently pumped solitons33,34. As an aside, 
a study of the zero GVD dispersion regime in this coupled resonator 
system is reported in ref. 35.
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Methods
Resonator design
The rings consist of Si3N4 waveguides (2,800 nm width and 100 nm 
thickness) embedded in silica and formed into a racetrack shape. 
The waveguide cross-section only supports one polarization mode. 
Detailed information on fabrication steps can be found in ref. 4. For 
the two-ring device, ring A has a circumference of 9.5 mm, and ring 
B is 0.5% longer. For the three-ring device, the right-most ring has a 
circumference of 9.5 mm, and each other ring is 0.3% longer than its 
neighbour to the right. The adiabatic waveguide bend has the shape 
of a fifth-degree spline such that the curvature is continuous along 
the curve and transition loss is minimized. The gap between the inner 
edges of the two waveguides in the coupling region is 2,400 nm, and 
the effective coupling length is 1.0 mm including contributions from 
the adiabatic bend (which is 10.5% of the shortest ring circumference).

The simulated dispersion of straight Si3N4 waveguides with 2.8 μm 
width are shown in Extended Data Fig. 1a. For these calculations, the 
effective index of the fundamental TE mode was calculated and the 
group velocity dispersion determined through β2 = λ3/(2πc2)∂2nwg/∂λ2, 
where λ is the vacuum wavelength. For waveguides with thicknesses 
under 780 nm, the fundamental TE mode always features normal dis-
persion in the C-band. To maintain high optical Q factors, the waveguide 
thickness is about 100 nm for the current process, which places the 
waveguide deep into the normal dispersion region.

Simulations of the waveguide coupling rate gco with 2.4 μm cou-
pling gap are presented in Extended Data Fig. 1b. The effective index 
of the two supermodes at the coupling region is calculated, and the 
coupling rate gco is related to the index difference of the supermodes 
Δnwg by gco = Δnwgπ/λ. With a thinner waveguide or a longer wavelength, 
the optical confinement is weaker, leading to a larger coupling strength 
and larger spectral gap width.

Dispersion measurement and fitting
The dispersion is measured by sweeping a mode-hop-free laser 
while pumping the resonator, recording the mode positions from 
the transmission signal, and comparing it against a calibrated Mach–
Zehnder interferometer3. The averaged mode frequencies are fit-
ted by a second-order dispersion model given by equation (1) with 
D1 = 2π × 19.9766 GHz and D2 = 2π × (−283.0) kHz. The relative frequen-
cies are fitted with equation (2), where we assume that the coupling is 
exponentially decaying with respect to mode number:

gco = gco,0 exp(−μ/μg) (3)

where μg gives a decay scale. The fitting uses gco,0, μg and the crossing 
centre position as fitting parameters, whereas D1 and D2 are derived 
from the mode frequency average fitting and ϵ = 1/401 is taken from 
design values. Fitting gives gco,0Lco = 0.954 and μg = 1,196. The cou-
pling is equivalent to a 33:67% coupler near μ = 0, and the coupling 
rate increases by 5.4% for every 10 nm increased near 1,550 nm. The 
coupling rate and decaying scale are close to simulation results 
(gco,0Lco = 0.782, 5.5% increase per 10 nm; see Extended Data Fig. 1b). 
Differences between measured and simulated values may result from 
variations to the refractive index and layer thickness.

Dynamics of the soliton pulse pair
The optical fields in the two rings are governed by the coupled nonlin-
ear wave equations:

∂EA
∂t

= −( κ
2
+ iδωA) EA − vg

∂EA
∂z

− i β2v
3
g

2
∂2EA
∂z2

+igcovgχco(z)EB + igNL|EA|2EA + F
(4)

∂EB
∂t

= −( κ
2
+ iδωB) EB − vg

∂EB
∂z

− i β2v
3
g

2
∂2EB
∂z2

+igcovgχco(z)EA + igNL|EB|2EB
(5)

accompanied by periodic boundary conditions in the z-direction, 
where EA,B denotes the optical field in the two rings normalized to 
photon numbers in the corresponding length-averaged ring; κ = κin + κex 
is the loss rate (sum of intrinsic and external loss) for the individual 
rings (assumed to be identical for rings A and B), which can be linked 
to the quality factors via κ = ω0/Q, κin = ω0/Qin, and κex = ω0/Qex. Further-
more, δωA,B = ω0A,B − ωp is the pump laser detuning; vg = c/ng is the group 
velocity of the waveguide; z ∈ [0, LA,B) is the resonator coordinate, with 
LA,B the ring length; β2 is the waveguide group velocity dispersion; gco 
is the coupling strength between the two waveguides in the coupling 
region; χco(z) is the indicator function, with value 1 in the coupling 
region and 0 elsewhere; gNL = ℏω2

0D1n2/(2πngAeff) is the nonlinear coef-
ficient, with Aeff being the effective mode area; and F = √κexPin/ℏω0  is 
the pump term, where Pin is the on-chip pump power. For simplicity, 
the pump and loss terms are averaged over the entire resonator without 
considering the detailed coupling geometry between the rings and the 
bus waveguides, and the coupling is assumed to be wavelength inde-
pendent (gco = gco,0). A similar coupled equation set holds for the 
three-coupled-ring device.

Numerical simulations have been performed based on the above 
nonlinear wave equations. For the evolution of intracavity wave-
forms, we use the fourth-order Runge–Kutta method to update the 
fields in slow time t, in which a discrete Fourier-transformation is 
used to calculate the fast time derivative terms (with respect to the 
resonator coordinate, z). The results are used to plot Fig. 3b and com-
pare with the optical spectra in Fig. 1b,e (see Extended Data Fig. 7). 
Parameters used for numerical simulations are: ω0 = 2π × 193.34 THz; 
Qin = 75 × 106; Qex = 45 × 106; δωA = δωB = 10κ − G, where G is the half 
gap created by the coupling (pump is red-detuned with respect 
to the upper branch resonance by 10κ); D1 = 2π × 19.9766 GHz; 
D2 = −2π × 283.0 kHz; ng = 1.575; Pin = 200 mW; gNL = 0.0277 s−1 and 
gco,0 = 0.954 mm−1.

Resemblance to Dirac solitons
To demonstrate that the resulting soliton resembles the optical Dirac 
soliton16, we will convert the nonlinear wave equations (equations (4) 
and (5)) into a form that is analogous to the Dirac equation in quantum 
field theory. We start by defining a common round trip variable θ for 
both resonators, with θ = 2πz/LA for ring A and θ = 2πz/LB for ring B. 
With this change, the coupled equations read

∂EA
∂t

= −( κ
2
+ iδωA) EA

− D1

1−ϵ
∂EA
∂θ

+ i D2

2(1−ϵ)2
∂2EA
∂θ2

+igcovgχco(θ)EB + igNL|EA|2EA + F

(6)

and similarly for EB with ϵ replaced by −ϵ and pump term dropped. 
The unified round trip variable breaks the correspondence of wave-
guide sections in the coupling region, but these have been neglected 
as the pulse width is much larger compared to the waveguide coor-
dinate difference (corresponding to 10.5% of the ring length differ-
ence; see Fig. 3b). Switching to the co-moving frame of the pulse 
[ψA,B(θ, t) ≡ EA,B(θ + D1t, t)] leads to

∂ψA

∂t
≈ −( κ

2
+ iδωA)ψA − ϵD1

∂ψA

∂θ
+ i D2

2
∂2ψA

∂θ2

+iGψB + igNL|ψA|2ψA + F
(7)

and similarly for EB, where we retain the lowest order of ϵ and further 
assume that the pulse varies slowly within one round trip such that the 
effect of coupling is averaged over the resonator length (equivalent to 
uniform coupling which conserves the mode number). Finally, shifting 
the wavevector and frequency reference (ψ̃A,B ≡ ψA,B exp(ik0θ − iω0t)) 
gives
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∂ψ̃A

∂t
≈ −i (δωA − ϵD1k0 + ω0) ψ̃A − ϵD1

∂ψ̃A

∂θ
+ iGψ̃B

+igNL|ψ̃A|2ψ̃A

− κ
2
ψ̃A + i

D2

2
∂2ψ̃A

∂θ2
+ F exp(ik0θ − iω0t)

(8)

∂ψ̃B

∂t
≈ −i (δωB + ϵD1k0 + ω0) ψ̃B + ϵD1

∂ψ̃B

∂θ
+ iGψ̃A

+igNL|ψ̃B|2ψ̃B

− κ
2
ψ̃B + i

D2

2
∂2ψ̃B

∂θ2

(9)

where we assume that we are pumping near the crossing centre such 
that ϵD1 ≪ D2k0 and high-order terms in k0 could be neglected. Choosing 
k0 = (δωA − δωB)/(2ϵD1) and ω0 = − (δωA + δωB)/2 removes the effective 
detuning terms from the two equations.

This can now be compared with the massive Dirac equation in 1 + 1 
dimension written in a chiral basis36:

∂tψL = −c∂xψL + i
Mc2
ℏ ψR (10)

∂tψR = +c∂xψR + i
Mc2
ℏ ψL (11)

where M is interpreted as the mass, and corresponds to the coupling 
term (the massless Dirac equation with M = 0 would correspond to an 
uncoupled system with the frequency gap closed). The momentum 
term corresponds to the FSR difference. The nonlinear term converts 
the equation into a nonlinear Dirac equation, although there is no exact 
analogue of the self-phase modulation in quantum field theory as this 
contradicts the Pauli exclusion principle. Loss, pump and second-order 
dispersion terms do not have analogues in the nonlinear Dirac equa-
tion, and could be treated as perturbations for the soliton dynamics. 
For example, D2 is no longer the dominant contribution to dispersion 
near the mode crossing centre. We note that these terms do not change 
the qualitative feature of the generated soliton, therefore establishing 
the link between the current soliton and the optical Dirac soliton pre-
viously studied16. A comparison of the simulated soliton profile using 
different levels of approximations can be found in Extended Data Fig. 8.

Dirac soliton dynamics in the coupling region
In the coupling region where linear interaction is dominant in the 
Dirac soliton dynamics, the coupled nonlinear wave equations can 
be reduced to:

∂EA
∂z

+ 1
vg

∂EA
∂t

= igcoEB (12)

∂EB
∂z

+ 1
vg

∂EB
∂t

= igcoEA, (13)

where z = 0 denotes the beginning of the coupling region. Note that 
gco here is assumed to be wavelength independent for simplicity.  
The optical fields at z can be related to the incident fields (z = 0) as

EA(z, t) = cos(gcoz)EA(0, t′) + i sin(gcoz)EB(0, t′) (14)

EB(z, t) = cos(gcoz)EB(0, t′) + i sin(gcoz)EA(0, t′) (15)

where t′ = t − z/vg is the retarded time. The evolution of soliton proper-
ties with propagation distance plotted in Fig. 2c is obtained from equa-
tions (14) and (15), with initial conditions EA,B(0, t′)  taken from 
simulations, and shows good agreement with the simulation results 
using equations (4) and (5).
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Extended Data Fig. 1 | Dispersion and coupling characteristics of the ring 
waveguide. a, Finite element simulation results for dispersions of straight Si3N4 
waveguides with fixed width (2.8 μm) as a function of wavelength and waveguide 
thickness. The zero-dispersion boundary is marked as the black dashed curve. 
Nominal waveguide thickness (100 nm) for the current process is marked as 

the white dashed line. b, Numerical simulations of the waveguide coupling 
rate gco and the corresponding spectral gap (2G = gcoLcoD1/π, with Lco = 1.0 mm 
and D1 = 2π × 20 GHz) are plotted as a function of wavelength and waveguide 
thickness. The gap between waveguides is 2.4 μm.
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Extended Data Fig. 2 | Illustration of mode hybridization in the coupling 
region and observation of soliton steps at multiple wavelengths. a, Fitted 
optical resonance frequency dispersion of the coupled resonator (solid curves) 
and fitted mode frequency dispersion of the single rings (red and blue lines) 
plotted versus relative mode number μ. These plots are the same as Fig. 2cin the 
main text. The anomalous dispersion windows near μ = −200, 0 and 200 have 
been highlighted. b, Cross-sectional view of simulated electric field amplitudes 
in the coupled region at mode numbers indicated in a by the black points. The 
right (left) waveguide belongs to ring A (B). The waveguide geometry used here 

is 2.8μm*0.1μm, and the gap between two waveguides is 2.4 μm. At the crossing 
centre (I, II, V and VI), two waveguides have the same field intensity and the 
opposite (same) phase for the anti-symmetric (symmetric) mode. When hybrid 
mode frequencies meet the single-ring resonances (III and IV), the electrical 
field at the coupled region is contributed by a single ring. c–e, Upper panels: 
transmission observed when scanning a laser over resonances in multiple 
anomalous dispersion windows. Lower panels: zoom-in of the highlighted region 
in corresponding upper panel. Soliton steps are observed around μ = − 200,  
0 and 200.
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Extended Data Fig. 3 | Experiment set-up for generation and characterization 
of the bright solitons in the coupled-ring resonators. The output of a 
continuous wave fibre laser is amplified by an erbium-doped fibre amplifier 
(EDFA), and then coupled to the input of the bus waveguide. Soliton power was 
collected by a lensed fibre from the through port and drop port. The through-
port output is filtered by a fibre Bragg grating (FBG) to isolate comb power from 
the pump. The comb power from through port as well as output from drop port 

are sent to a phase noise analyser (PNA), optical spectrum analyser (OSA) and 
vector network analyser (VNA) to characterize beatnote phase noise, comb 
spectrum and soliton resonances, respectively. The VNA-controlled frequency 
modulation to the pump laser is applied through a phase modulator (PM), and 
the measured responses are presented in Extended Data Fig. 6a. MZI: Mach-
Zehnder interferometer, AOM: acousto-optical modulator, PD: photodetector.
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Extended Data Fig. 4 | Stable soliton operation in the two-ring resonator 
measured over 4 h. a, Continuous measurement of the RF beat note of a pulse 
pair soliton microcomb over 4 h. The RF beatnote peak drift over 4 h is within 

25.7 kHz (1.29 PPM). f: RF frequency, fc: centre RF frequency, RBW: resolution 
bandwidth. b, Simultaneous measurement of the optical spectrum of the pulse 
pair soliton microcomb in a over 4 h.
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Extended Data Fig. 5 | Additional optical spectra of the solitons in the 
two-ring coupled resonator. a,b, Soliton optical spectra in two-ring coupled 
resonator at different pump laser detunings (δω), for comparison to the optical 
spectra in Fig. 1b in the main text (where δω = 75 MHz). c, Soliton pulse pair optical 

spectra generated in another device wherein the coupling centre wavelength 
is several nanometres away from the pump laser wavelength. As a result, the 
spectra feature only one dispersive wave on the longer wavelength side.
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Extended Data Fig. 6 | 𝒞𝒞 and 𝒮𝒮 resonances and autocorrelation measurements 
of solitons in the coupled-ring resonator. a, The relative frequency of the 𝒞𝒞 and 
𝒮𝒮 resonances are measured using a vector network analyser and plotted versus 
tuning voltage in the two-ring resonator. b–h, Experimental autocorrelation 
measurements of: (b) single soliton state in a two-ring resonator (state in Fig. 1b); 
(c) two soliton state in a two-ring resonator (state in Fig. 4a); (d) two soliton crystal 

state in a two-ring resonator (state in Fig. 4b); (e) single soliton state in a  
three-ring resonator (state in Fig. 1e); (f ) two soliton state in a three-ring  
resonator (state in Fig. 4c); (g) two soliton state in a three-ring resonator  
(state in Fig. 4d); (h) three soliton state in a three-ring resonator (state in Fig. 4e). 
The resolution of the autocorrelation set-up is 100 fs. The zoom-in of each 
autocorrelation measurements are shown in corresponding right panel.
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Extended Data Fig. 7 | Comparisons between simulated soliton spectra and experimental measurements. a, Simulated and measured optical spectra in a two-ring 
coupled resonator. The experimental results reproduce Fig. 1b. The blue (red) traces represent the through (drop) port spectrum. b, Simulated and measured optical 
spectrum in a three-ring coupled resonator. The experimental results reproduce Fig. 1e.
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Extended Data Fig. 8 | Simulated optical spectra and dispersion relation for 
Dirac solitons assuming different levels of approximations in the model. 
Top panel: Uniform coupling between two rings (mode number conservation), 
without pump and loss, and with zero second-order dispersion. Middle panel: 
non-uniform coupling between two rings (mode number non-conservation), 

with pump and loss included, and with zero second-order dispersion. Recurring 
dispersion relations can be observed but the spectrum is free of strong dispersive 
waves. Bottom panel: non-uniform coupling between two rings (mode number 
non-conservation), with pump and loss and with negative second-order dispersion 
(that is, full equations (4) and (5)).
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