Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chip-scale simulations in a quantum-correlated synthetic space

Abstract

An efficient simulator for quantum systems is one of the original goals for the efforts to develop a quantum computer. In recent years, synthetic dimensions in photonics have emerged as a potentially powerful approach for simulation that is free from the constraint of geometric dimensionality. Here we demonstrate a quantum-correlated synthetic crystal that is based on a coherently controlled broadband quantum frequency comb produced in a chip-scale, dynamically modulated lithium niobate microresonator. The time–frequency entanglement inherent with the comb modes greatly extends the dimensionality of the synthetic space, creating a massive, nearly 400 × 400 synthetic lattice with electrically controlled tunability. With such a system, we are able to utilize the evolution of quantum correlations between entangled photons to perform a series of simulations, demonstrating quantum random walks, Bloch oscillations and multilevel Rabi oscillations in the time and frequency correlation space (demonstrated in a 5 × 5 mode subspace). The device combines the simplicity of monolithic nanophotonic architecture, high dimensionality of a quantum-correlated synthetic space and on-chip coherent control, which opens up an avenue towards chip-scale implementation of large-scale analogue quantum simulation and computation in the time–frequency domain.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of a quantum-correlated synthetic crystal.
Fig. 2: Characterization of the biphoton QOFC.
Fig. 3: Quantum random walk of correlated photons in the synthetic lattice.
Fig. 4: Simulating Bloch oscillations on the biphoton temporal correlations.
Fig. 5: Strong coupling and Rabi oscillations.

Data availability

Data and information supporting the results in the article and its conclusions, and to reproduce the experiment are provided in the main article and the Supplementary Information.

References

  1. Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. In Proc. 43rd Annual ACM Symposium on Theory of Computing 333–342 (2011).

  2. Rohde, P. P. & Ralph, T. C. Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85, 022332 (2012).

    Article  ADS  Google Scholar 

  3. Zhong, H.-S. et al. Phase-programmable gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett. 127, 180502 (2021).

    Article  ADS  Google Scholar 

  4. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon. 11, 361–365 (2017).

    Article  ADS  Google Scholar 

  5. Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

    Article  ADS  Google Scholar 

  6. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    Article  ADS  Google Scholar 

  7. Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    Article  ADS  Google Scholar 

  8. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Article  ADS  Google Scholar 

  9. Verbin, M., Zilberberg, O., Kraus, Y. E., Lahini, Y. & Silberberg, Y. Observation of topological phase transitions in photonic quasicrystals. Phys. Rev. Lett. 110, 076403 (2013).

    Article  ADS  Google Scholar 

  10. Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article  ADS  Google Scholar 

  11. Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).

    Article  Google Scholar 

  12. Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2020).

    Article  ADS  Google Scholar 

  13. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Arrazola, J. M. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

    Article  ADS  Google Scholar 

  15. Yuan, L., Lin, Q., Xiao, M. & Fan, S. Synthetic dimension in photonics. Optica 5, 1396–1405 (2018).

    Article  ADS  Google Scholar 

  16. Lukens, J. M. & Lougovski, P. Frequency-encoded photonic qubits for scalable quantum information processing. Optica 4, 8–16 (2017).

    Article  ADS  Google Scholar 

  17. Lin, Q., Sun, X.-Q., Xiao, M., Zhang, S.-C. & Fan, S. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension. Sci. Adv. 4, eaat2774 (2018).

    Article  ADS  Google Scholar 

  18. Luo, X.-W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 1–8 (2015).

    Article  ADS  Google Scholar 

  19. Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    Article  ADS  Google Scholar 

  20. Ozawa, T., Price, H. M., Goldman, N., Zilberberg, O. & Carusotto, I. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum hall physics. Phys. Rev. A 93, 043827 (2016).

    Article  ADS  Google Scholar 

  21. Yuan, L. & Fan, S. Three-dimensional dynamic localization of light from a time-dependent effective gauge field for photons. Phys. Rev. Lett. 114, 243901 (2015).

    Article  ADS  Google Scholar 

  22. Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    Article  ADS  Google Scholar 

  23. Bartlett, B., Dutt, A. & Fan, S. Deterministic photonic quantum computation in a synthetic time dimension. Optica 8, 1515–1523 (2021).

    Article  ADS  Google Scholar 

  24. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  ADS  Google Scholar 

  25. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article  ADS  Google Scholar 

  26. Dutt, A. et al. Creating boundaries along a synthetic frequency dimension. Nat Commun. 13, 3377 (2022).

    Article  ADS  Google Scholar 

  27. Li, G. et al. Dynamic band structure measurement in the synthetic space. Sci. Adv. 7, eabe4335 (2021).

    Article  ADS  Google Scholar 

  28. Regensburger, A. et al. Parity–time synthetic photonic lattices. Nature 488, 167–171 (2012).

    Article  ADS  Google Scholar 

  29. Wang, K. et al. Generating arbitrary topological windings of a non-hermitian band. Science 371, 1240–1245 (2021).

    Article  ADS  Google Scholar 

  30. Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. 10, 3122 (2019).

    Article  ADS  Google Scholar 

  31. Wang, K. et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl. 9, 132 (2020).

    Article  ADS  Google Scholar 

  32. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-hermitian bands. Nature 598, 59–64 (2021).

    Article  ADS  Google Scholar 

  33. Chalabi, H. et al. Guiding and confining of light in a two-dimensional synthetic space using electric fields. Optica 7, 506–513 (2020).

    Article  ADS  Google Scholar 

  34. Hu, Y., Reimer, C., Shams-Ansari, A., Zhang, M. & Loncar, M. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica 7, 1189–1194 (2020).

    Article  ADS  Google Scholar 

  35. Balčytis, A. et al. Synthetic dimension band structures on a Si CMOS photonic platform. Sci. Adv. 8, eabk0468 (2022).

    Article  ADS  Google Scholar 

  36. Plenio, M. B. & Huelga, S. F. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys. 10, 113019 (2008).

    Article  ADS  Google Scholar 

  37. Caruso, F., Spagnolo, N., Vitelli, C., Sciarrino, F. & Plenio, M. B. Simulation of noise-assisted transport via optical cavity networks. Phys. Rev. A 83, 013811 (2011).

    Article  ADS  Google Scholar 

  38. Liberman, L., Israel, Y., Poem, E. & Silberberg, Y. Quantum enhanced phase retrieval. Optica 3, 193–199 (2016).

    Article  ADS  Google Scholar 

  39. Sansoni, L. et al. Two-particle bosonic-fermionic quantum walk via integrated photonics. Phys. Rev. Lett. 108, 010502 (2012).

    Article  ADS  Google Scholar 

  40. Lanyon, B. P. et al. Towards quantum chemistry on a quantum computer. Nat. Chem. 2, 106–111 (2010).

    Article  Google Scholar 

  41. Ma, X.-s, Dakic, B., Naylor, W., Zeilinger, A. & Walther, P. Quantum simulation of the wavefunction to probe frustrated heisenberg spin systems. Nat. Phys. 7, 399–405 (2011).

    Article  Google Scholar 

  42. Javid, U. A. et al. Ultrabroadband entangled photons on a nanophotonic chip. Phys. Rev. Lett. 127, 183601 (2021).

    Article  ADS  Google Scholar 

  43. Zhang, M. et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019).

    Article  ADS  Google Scholar 

  44. Hu, Y. et al. High-efficiency and broadband on-chip electro-optic frequency comb generators. Nat. Photo. 16, 679–685 (2022).

    Article  ADS  Google Scholar 

  45. Kourogi, M., Enami, T. & Ohtsu, M. A monolithic optical frequency comb generator. IEEE Photon. Technol. Lett. 6, 214–217 (1994).

    Article  ADS  Google Scholar 

  46. Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    Article  ADS  Google Scholar 

  47. Tang, H. et al. Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. 4, eaat3174 (2018).

    Article  ADS  Google Scholar 

  48. Imany, P., Lingaraju, N. B., Alshaykh, M. S., Leaird, D. E. & Weiner, A. M. Probing quantum walks through coherent control of high-dimensionally entangled photons. Sci. Adv. 6, eaba8066 (2020).

    Article  ADS  Google Scholar 

  49. Bromberg, Y., Lahini, Y., Morandotti, R. & Silberberg, Y. Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009).

    Article  ADS  Google Scholar 

  50. Gräfe, M. et al. Integrated photonic quantum walks. J. Opt. 18, 103002 (2016).

    Article  ADS  Google Scholar 

  51. Haldar, R. et al. Steering of quantum walks through coherent control of high-dimensional bi-photon quantum frequency combs with tunable state entropies. Preprint at https://arxiv.org/abs/2210.06305 (2022).

  52. Luttinger, J. The effect of a magnetic field on electrons in a periodic potential. Phys. Rev. 84, 814 (1951).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Morandotti, R., Peschel, U., Aitchison, J., Eisenberg, H. & Silberberg, Y. Experimental observation of linear and nonlinear optical bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).

    Article  ADS  Google Scholar 

  54. Preiss, P. M. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Kaluzny, Y., Goy, P., Gross, M., Raimond, J. & Haroche, S. Observation of self-induced rabi oscillations in two-level atoms excited inside a resonant cavity: the ringing regime of superradiance. Phys. Rev. Lett. 51, 1175 (1983).

    Article  ADS  Google Scholar 

  56. Zhu, X. et al. Hypercubic cluster states in the phase-modulated quantum optical frequency comb. Optica 8, 281–290 (2021).

    Article  ADS  Google Scholar 

  57. Shams-Ansari, A. et al. Reduced material loss in thin-film lithium niobate waveguides. APL Photon. 7, 081301 (2022).

    Article  ADS  Google Scholar 

  58. Xu, Y. et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators. Opt. Express 29, 5497–5504 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. Pfister (University of Virginia) for useful discussions. This work is supported in part by the National Science Foundation (NSF) (grant nos. OMA-2138174 and ECCS-2231036), the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (grant no. HDTRA11810047), and the Defense Advanced Research Projects Agency (DARPA) QuICC programme under agreement no. FA8650-23-C-7312 and LUMOS programme under agreement no. HR001-20-2-0044. This work was performed in part at the Cornell NanoScale Facility, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (grant no. NNCI-2025233). The project or effort depicted was or is sponsored by the Department of the Defense, Defense Threat Reduction Agency. The content of the information does not necessarily reflect the position or the policy of the federal government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Contributions

Q.L. and U.A.J. conceived the experiment. U.A.J. and J.S. conducted theoretical analysis and ran simulations for device design. U.A.J. and J.L. fabricated the device. U.A.J., R.L.-R. and A.G. set up and ran the experiment. U.A.J. conducted data analysis and wrote the manuscript with contributions from all authors. Q.L. supervised the project.

Corresponding author

Correspondence to Qiang Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions, Figs. 1–13 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javid, U.A., Lopez-Rios, R., Ling, J. et al. Chip-scale simulations in a quantum-correlated synthetic space. Nat. Photon. 17, 883–890 (2023). https://doi.org/10.1038/s41566-023-01236-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01236-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing