Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals

Abstract

In the search for novel, robust quantum emitters, inorganic lead halide perovskite nanocrystals have emerged as potential colloidal sources of coherent single photons. While colloidal perovskite nanocrystals offer a great source of synthetically scalable, tunable photon sources, observation of two-photon quantum interference from the emission of any colloidal nanoparticle has not been previously reported. In this work we prepare large CsPbBr3 nanocrystals and observe direct evidence of interference between indistinguishable single photons sequentially emitted from a single nanocrystal. We measure Hong–Ou–Mandel interference from photons in CsPbBr3 nanocrystals, showing corrected visibilities of up to 0.56 ± 0.12 in the absence of any radiative enhancement or photonic architecture. These results demonstrate the unique potential of perovskite nanocrystals to serve as scalable, colloidal sources of indistinguishable single photons.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Room-temperature ensemble spectra and HAADF-STEM images of PNCs in this work.
Fig. 2: Photoluminescence, time trace and polarization data.
Fig. 3: Hong–Ou–Mandel interferometry and biexciton filtering.
Fig. 4: Coalescence of indistinguishable photons revealed by correlation functions.

Data availability

All the datasets that support the findings of this study are available on Figshare or from the corresponding author on reasonable request. Source Data are provided with this paper.

References

  1. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  2. Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116–120 (2005).

    Article  ADS  Google Scholar 

  3. O’Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  4. O’Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  5. Gisin, N., Goire Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002).

  6. Zhang, L., Silberhorn, C. & Walmsley, I. A. Secure quantum key distribution using continuous variables of single photons. Phys. Rev. Lett. 100, 110504 (2008).

  7. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

  8. Close, T., Gauger, E. M. & Lovett, B. W. Overcoming phonon-induced dephasing for indistinguishable photon sources. New J. Phys. 14, 113004 (2012).

  9. Reigue, A. et al. Probing electron–phonon interaction through two-photon interference in resonantly driven semiconductor quantum dots. Phys. Rev. Lett. 118, 233602 (2017).

  10. Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong–Ou–Mandel experiments. Phys. Rev. Lett. 116, 1–5 (2016).

    Article  Google Scholar 

  11. He, Y. M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013).

    Article  ADS  Google Scholar 

  12. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  13. Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

  14. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    Article  ADS  Google Scholar 

  15. Santori, C. et al. Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond. Nanotechnology 21, 274008 (2010).

  16. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

  17. Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article  ADS  Google Scholar 

  18. Luo, Y. et al. Carbon nanotube color centers in plasmonic nanocavities: a path to photon indistinguishability at telecom bands. Nano Lett. 19, 9037–9044 (2019).

    Article  ADS  Google Scholar 

  19. Grosso, G. et al. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8, 705 (2017).

  20. Spokoyny, B. et al. Effect of spectral diffusion on the coherence properties of a single quantum emitter in hexagonal boron nitride. J. Phys. Chem. Lett. 11, 1330–1335 (2020).

  21. de Mello Donegá, C., Bode, M. & Meijerink, A. Size- and temperature-dependence of exciton lifetimes in CdSe quantum dots. Phys. Rev. B 74, 085320 (2006).

  22. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    Article  ADS  Google Scholar 

  23. Beyler, A. P., Marshall, L. F., Cui, J., Brokmann, X. & Bawendi, M. G. Direct observation of rapid discrete spectral dynamics in single colloidal CdSe-CdS core-shell quantum dots. Phys. Rev. Lett. 111, 177401 (2013).

  24. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  25. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  ADS  Google Scholar 

  26. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  Google Scholar 

  27. Tong, Y. et al. From precursor powders to CsPbX3 perovskite nanowires: one-pot synthesis, growth mechanism, and oriented self-assembly. Angew. Chem. Int. Ed. 56, 13887–13892 (2017).

    Article  ADS  Google Scholar 

  28. Krieg, F. et al. Colloidal CsPbX3 (X = Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability. ACS Energy Lett. 3, 641–646 (2018).

    Article  Google Scholar 

  29. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  ADS  Google Scholar 

  30. Utzat, H. et al. Probing linewidths and biexciton quantum yields of single cesium lead halide nanocrystals in solution. Nano Lett. 17, 6838–6846 (2017).

    Article  ADS  Google Scholar 

  31. Sercel, P. C. et al. Exciton fine structure in perovskite nanocrystals. Nano Lett. 19, 4068–4077 (2019).

    Article  ADS  Google Scholar 

  32. Empedocles, S. A. & Bawendi, M. G. Influence of spectral diffusion on the line shapes of single CdSe nanocrystallite quantum dots. J. Phys. Chem. B 103, 1826–1830 (1999).

    Article  Google Scholar 

  33. Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  34. Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404–2410 (2019).

    Article  ADS  Google Scholar 

  35. Madsen, K. H. et al. Efficient out-coupling of high-purity single photons from a coherent quantum dot in a photonic-crystal cavity. Phys. Rev. B 90, 155303 (2014).

  36. Yan, J. et al. Double-pulse generation of indistinguishable single photons with optically controlled polarization. Nano Lett. 22, 1483–1490 (2022).

    Article  ADS  Google Scholar 

  37. Dusanowski, Ł. et al. Purcell-enhanced and indistinguishable single-photon generation from quantum dots coupled to on-chip integrated ring resonators. Nano Lett. 20, 6357–6363 (2020).

    Article  ADS  Google Scholar 

  38. Bylander, J., Robert-Philip, I. & Abram, I. Interference and correlation of two independent photons. European Phys. J. D 22, 295–301 (2003).

    Article  ADS  Google Scholar 

  39. Huber, T., Predojević, A., Föger, D., Solomon, G. & Weihs, G. Optimal excitation conditions for indistinguishable photons from quantum dots. New J. Phys. 17, 123025 (2015).

  40. Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

    Article  ADS  Google Scholar 

  41. Hudson, A. J. et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  ADS  Google Scholar 

  42. Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical stark effect. Phys. Rev. Lett. 103, 217402 (2009).

Download references

Acknowledgements

A.E.K.K, C.J.K., W.S., T.S. and D.B.B. acknowledge support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-SC00216. H.U. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (under award no. DE-FG02-07ER46454). T.S. also acknowledges support from Graduate Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). A.H.P. acknowledges support from a post-doctoral fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC). C.J.K. thanks A. Penn at MIT.nano for assistance with HAADF-STEM measurements, which were performed in part through the use of MIT.nano’s facilities.

Author information

Authors and Affiliations

Authors

Contributions

A.E.K.K. and H.U. conceived of the study. A.E.K.K. designed the experiment, performed sample preparation, acquired all of the single-nanocrystal data and performed all of the data analysis. C.J.K. synthesized the CsPbBr3 perovskite nanocrystals and acquired all of the ensemble data. A.H.P. aided the background research and data interpretation. W.S. assisted in designing the optical set-up and in developing sample preparation procedures. T.S. and D.B.B. helped develop sample preparation procedures. A.E.K.K. wrote the manuscript and all of the authors provided feedback and comments. M.G.B. directed and supervised the research.

Corresponding author

Correspondence to Moungi G. Bawendi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Discussion and Figs. 1–8.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 1

Statistical Source Data.

Source Data Extended Data Fig. 2

Statistical Source Data.

Source Data Extended Data Fig. 3

Statistical Source Data.

Source Data Extended Data Fig. 4

Statistical Source Data.

Source Data Extended Data Fig. 5

Statistical Source Data.

Source Data Extended Data Fig. 6

Statistical Source Data.

Source Data Extended Data Fig. 7

Statistical Source Data.

Source Data Extended Data Fig. 8

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplan, A.E.K., Krajewska, C.J., Proppe, A.H. et al. Hong–Ou–Mandel interference in colloidal CsPbBr3 perovskite nanocrystals. Nat. Photon. 17, 775–780 (2023). https://doi.org/10.1038/s41566-023-01225-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01225-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing