Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface between picosecond and nanosecond quantum light pulses

Abstract

Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual scheme of large-scale spectral bandwidth conversion.
Fig. 2: Experimental set-up and Fresnel waveforms.
Fig. 3: Spectral compression of coherent laser pulses.
Fig. 4: Fresnel time-lens aperture.
Fig. 5: Spectral manipulation of single-photon wavepackets.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  2. Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).

    Article  ADS  Google Scholar 

  3. Karpiński, M., Davis, A. O. C., Sośnicki, F., Thiel, V. & Smith, B. J. Control and measurement of quantum light pulses for quantum information science and technology. Adv. Quantum Technol. 4, 2000150 (2021).

    Article  Google Scholar 

  4. Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).

    Article  Google Scholar 

  5. Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).

    Article  ADS  Google Scholar 

  6. Mosley, P. J. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).

    Article  ADS  Google Scholar 

  7. MacLean, J.-P. W., Donohue, J. M. & Resch, K. J. Direct characterization of ultrafast energy-time entangled photon pairs. Phys. Rev. Lett. 120, 053601 (2018).

    Article  ADS  Google Scholar 

  8. Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Light. Technol. 28, 662–701 (2010).

    Article  ADS  Google Scholar 

  9. Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    Article  ADS  Google Scholar 

  10. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  ADS  Google Scholar 

  11. Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    Article  ADS  Google Scholar 

  12. Jensen, K. et al. Quantum memory for entangled continuous-variable states. Nat. Phys. 7, 13–16 (2011).

    Article  Google Scholar 

  13. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  Google Scholar 

  14. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    Article  ADS  Google Scholar 

  15. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photons emitters. Nat. Photon. 10, 631–641 (2016).

    Article  ADS  Google Scholar 

  16. Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).

    Article  ADS  Google Scholar 

  17. Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).

    Article  Google Scholar 

  18. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  19. Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence-time. Nat. Photon. 11, 646–650 (2017).

    Article  ADS  Google Scholar 

  20. Kaczmarek, K. T. et al. High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018).

    Article  ADS  Google Scholar 

  21. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  ADS  Google Scholar 

  22. Tiarks, D., Schmidt, S., Rempe, G. & Dür, S. Optical π phase shift created with single-photon pulse. Sci. Adv. 2, e160003 (2016).

    Article  Google Scholar 

  23. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  24. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).

    Article  ADS  Google Scholar 

  26. Cacciapuoti, A. S., Caleffi, M., Van Meter, R. & Hanzo, L. When entanglement meets classical communications: quantum teleportation for the quantum internet. IEEE Trans. Commun. 68, 3808–3833 (2001).

    Article  Google Scholar 

  27. Ou, Z. Y. & Lu, Y. J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556–2559 (1999).

    Article  ADS  Google Scholar 

  28. Michelberger, P. S. et al. Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory. New J. Phys. 17, 043006 (2015).

    Article  ADS  Google Scholar 

  29. Lavoie, J., Donohue, J. M., Wright, L. G., Fedrizzi, A. & Resch, K. J. Spectral compression of single photons. Nat. Photon. 7, 363–366 (2013).

    Article  ADS  Google Scholar 

  30. Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2017).

    Article  ADS  Google Scholar 

  31. Allgaier, M. et al. Highly efficient frequency conversion with bandwidth compression of quantum light. Nat. Commun. 8, 14288 (2017).

    Article  ADS  Google Scholar 

  32. Specht, H. P. et al. Phase shaping of single-photon wave packets. Nat. Photon. 3, 469–472 (2016).

    Article  ADS  Google Scholar 

  33. Mazelanik, M., Leszczyński, A., Lipka, M., Parniak, M. & Wasilewski, W. Temporal imaging for ultra-narrowband few-photon states of light. Optica 7, 203–208 (2020).

    Article  ADS  Google Scholar 

  34. Agha, I., Ates, S., Sapienza, L. & Srinivasan, K. Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters. Opt. Lett. 39, 5677–5680 (2014).

    Article  ADS  Google Scholar 

  35. Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).

    Article  ADS  Google Scholar 

  36. Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).

    Article  ADS  Google Scholar 

  37. Joshi, C. et al. Picosecond-resolution single-photon time lens for temporal mode quantum processing. Optica 9, 364–373 (2022).

    Article  ADS  Google Scholar 

  38. Sośnicki, F., Mikołajczyk, M., Golestani, A. & Karpiński, M. Aperiodic electro-optic time lens for spectral manipulation of single-photon pulses. Appl. Phys. Lett. 116, 234003 (2020).

    Article  ADS  Google Scholar 

  39. Mittal, S. et al. Temporal and spectral manipulations of correlated photons using a time lens. Phys. Rev. A 96, 043807 (2017).

    Article  ADS  Google Scholar 

  40. Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).

    Article  ADS  Google Scholar 

  41. Torres-Company, V., Lancis, J. & Andrés, P. Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).

    Article  ADS  Google Scholar 

  42. Fresnel, A. Mémoire sur un Nouveau Système d’Éclairage des Phares (Imprimerie Royale, 1822).

    Google Scholar 

  43. Sośnicki, F. & Karpiński, M. Large-scale spectral bandwidth compression by complex electro-optic temporal phase modulation. Opt. Express 26, 31307–31316 (2018).

    Article  ADS  Google Scholar 

  44. Wright, L. J., Karpiński, M., Söller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys. Rev. Lett. 118, 023601 (2017).

    Article  ADS  Google Scholar 

  45. Li, B., Lou, S. & Azaña, J. Novel temporal zone plate designs with improved energy efficiency and noise performance. J. Light. Technol. 32, 4803–4809 (2014).

    Article  ADS  Google Scholar 

  46. Fernández-Pousa, C. R., Maram, R. & Azaña, J. CW-to-pulse conversion using temporal Talbot array illuminators. Opt. Lett. 42, 2427–2430 (2017).

    Article  ADS  Google Scholar 

  47. Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).

    Article  ADS  Google Scholar 

  48. Jin, M., Chen, J., Sua, Y., Kumar, P. & Huang, Y. Efficient electro-optical modulation on thin-film lithium niobate. Opt. Lett. 46, 1884–1887 (2021).

    Article  ADS  Google Scholar 

  49. Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light Sci. Appl. 11, 327 (2022).

    Article  ADS  Google Scholar 

  50. Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).

    Article  ADS  Google Scholar 

  51. Kielpinski, D., Corney, J. F. & Wiseman, H. M. Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011).

    Article  ADS  Google Scholar 

  52. Ashby, J. et al. Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science. Opt. Express 28, 38376–38389 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. O. C. Davis, M. Jachura, C. Radzewicz, B. J. Smith, N. Treps and A. Widomski for insightful comments and discussions. We thank Keysight and AM Technologies for equipment loans. This work was funded in part by the First TEAM (project no. POIR.04.04.00-00-5E00/18; M.K., F.S. and M.M.) and HOMING (project no. POIR.04.04.00-00-1E2B/16; M.K. and A.G.) programmes of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development, and in part by the National Science Centre of Poland QuantERA project QuICHE (project no. 2019/32/Z/ST2/00018; M.K. and A.G.) and Preludium (project no. 2019/35/N/ST2/04434; F.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.K. conceived and supervised the project. F.S. designed and performed the experiment with a contribution from M.M., who built the photon-pair source and the tunable spectral filter. A.G. contributed to the early stages of the experiment. F.S. and M.K. wrote the manuscript with input from all the authors. F.S. prepared the figures.

Corresponding authors

Correspondence to Filip Sośnicki or Michał Karpiński.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Sunil Mittal and John Donohue for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections S1-S3 and Figs. S1-S2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sośnicki, F., Mikołajczyk, M., Golestani, A. et al. Interface between picosecond and nanosecond quantum light pulses. Nat. Photon. 17, 761–766 (2023). https://doi.org/10.1038/s41566-023-01214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01214-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing