Abstract
Light is a key information carrier, enabling worldwide, high-speed data transmission through a telecommunication fibre network. This information-carrying capacity can be extended to transmitting quantum information (QI) by encoding it in single photons—flying qubits. However, the various QI-processing platforms operate at vastly different timescales. QI-processing units in atomic media, operating within nanosecond to microsecond timescales, and high-speed quantum communication, at picosecond timescales, cannot be linked efficiently because of the orders-of-magnitude mismatch in the timescales or, correspondingly, spectral linewidths. Here we develop a large-aperture time lens using wide-bandwidth electro-optic phase modulation to bridge this gap. We demonstrate coherent, deterministic spectral bandwidth compression of quantum light pulses by more than two orders of magnitude with high efficiency. This will facilitate large-scale hybrid QI-processing by linking the ultrafast and quasi-continuous-wave experimental platforms, which until now, to a large extent, have been developing independently.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding author on reasonable request.
References
Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).
Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).
Karpiński, M., Davis, A. O. C., Sośnicki, F., Thiel, V. & Smith, B. J. Control and measurement of quantum light pulses for quantum information science and technology. Adv. Quantum Technol. 4, 2000150 (2021).
Awschalom, D. et al. Development of quantum interconnects (QuICs) for next-generation information technologies. PRX Quantum 2, 017002 (2021).
Weiner, A. M. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun. 284, 3669–3692 (2011).
Mosley, P. J. et al. Heralded generation of ultrafast single photons in pure quantum states. Phys. Rev. Lett. 100, 133601 (2008).
MacLean, J.-P. W., Donohue, J. M. & Resch, K. J. Direct characterization of ultrafast energy-time entangled photon pairs. Phys. Rev. Lett. 120, 053601 (2018).
Essiambre, R.-J., Kramer, G., Winzer, P. J., Foschini, G. J. & Goebel, B. Capacity limits of optical fiber networks. J. Light. Technol. 28, 662–701 (2010).
Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).
Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).
Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).
Jensen, K. et al. Quantum memory for entangled continuous-variable states. Nat. Phys. 7, 13–16 (2011).
Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).
Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photons emitters. Nat. Photon. 10, 631–641 (2016).
Lago-Rivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecom-heralded entanglement between multimode solid-state quantum memories. Nature 594, 37–40 (2021).
Wallucks, A., Marinković, I., Hensen, B., Stockill, R. & Gröblacher, S. A quantum memory at telecom wavelengths. Nat. Phys. 16, 772–777 (2020).
Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Wang, Y. et al. Single-qubit quantum memory exceeding ten-minute coherence-time. Nat. Photon. 11, 646–650 (2017).
Kaczmarek, K. T. et al. High-speed noise-free optical quantum memory. Phys. Rev. A 97, 042316 (2018).
Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).
Tiarks, D., Schmidt, S., Rempe, G. & Dür, S. Optical π phase shift created with single-photon pulse. Sci. Adv. 2, e160003 (2016).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Reiserer, A., Kalb, N., Rempe, G. & Ritter, S. A quantum gate between a flying optical photon and a single trapped atom. Nature 508, 237–240 (2014).
Cacciapuoti, A. S., Caleffi, M., Van Meter, R. & Hanzo, L. When entanglement meets classical communications: quantum teleportation for the quantum internet. IEEE Trans. Commun. 68, 3808–3833 (2001).
Ou, Z. Y. & Lu, Y. J. Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons. Phys. Rev. Lett. 83, 2556–2559 (1999).
Michelberger, P. S. et al. Interfacing GHz-bandwidth heralded single photons with a warm vapour Raman memory. New J. Phys. 17, 043006 (2015).
Lavoie, J., Donohue, J. M., Wright, L. G., Fedrizzi, A. & Resch, K. J. Spectral compression of single photons. Nat. Photon. 7, 363–366 (2013).
Karpiński, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photon. 11, 53–57 (2017).
Allgaier, M. et al. Highly efficient frequency conversion with bandwidth compression of quantum light. Nat. Commun. 8, 14288 (2017).
Specht, H. P. et al. Phase shaping of single-photon wave packets. Nat. Photon. 3, 469–472 (2016).
Mazelanik, M., Leszczyński, A., Lipka, M., Parniak, M. & Wasilewski, W. Temporal imaging for ultra-narrowband few-photon states of light. Optica 7, 203–208 (2020).
Agha, I., Ates, S., Sapienza, L. & Srinivasan, K. Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters. Opt. Lett. 39, 5677–5680 (2014).
Matsuda, N. Deterministic reshaping of single-photon spectra using cross-phase modulation. Sci. Adv. 2, e1501223 (2016).
Salem, R. et al. Optical time lens based on four-wave mixing on a silicon chip. Opt. Lett. 33, 1047–1049 (2008).
Joshi, C. et al. Picosecond-resolution single-photon time lens for temporal mode quantum processing. Optica 9, 364–373 (2022).
Sośnicki, F., Mikołajczyk, M., Golestani, A. & Karpiński, M. Aperiodic electro-optic time lens for spectral manipulation of single-photon pulses. Appl. Phys. Lett. 116, 234003 (2020).
Mittal, S. et al. Temporal and spectral manipulations of correlated photons using a time lens. Phys. Rev. A 96, 043807 (2017).
Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).
Torres-Company, V., Lancis, J. & Andrés, P. Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).
Fresnel, A. Mémoire sur un Nouveau Système d’Éclairage des Phares (Imprimerie Royale, 1822).
Sośnicki, F. & Karpiński, M. Large-scale spectral bandwidth compression by complex electro-optic temporal phase modulation. Opt. Express 26, 31307–31316 (2018).
Wright, L. J., Karpiński, M., Söller, C. & Smith, B. J. Spectral shearing of quantum light pulses by electro-optic phase modulation. Phys. Rev. Lett. 118, 023601 (2017).
Li, B., Lou, S. & Azaña, J. Novel temporal zone plate designs with improved energy efficiency and noise performance. J. Light. Technol. 32, 4803–4809 (2014).
Fernández-Pousa, C. R., Maram, R. & Azaña, J. CW-to-pulse conversion using temporal Talbot array illuminators. Opt. Lett. 42, 2427–2430 (2017).
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101–104 (2018).
Jin, M., Chen, J., Sua, Y., Kumar, P. & Huang, Y. Efficient electro-optical modulation on thin-film lithium niobate. Opt. Lett. 46, 1884–1887 (2021).
Zhu, D. et al. Spectral control of nonclassical light pulses using an integrated thin-film lithium niobate modulator. Light Sci. Appl. 11, 327 (2022).
Yu, M. et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022).
Kielpinski, D., Corney, J. F. & Wiseman, H. M. Quantum optical waveform conversion. Phys. Rev. Lett. 106, 130501 (2011).
Ashby, J. et al. Temporal mode transformations by sequential time and frequency phase modulation for applications in quantum information science. Opt. Express 28, 38376–38389 (2020).
Acknowledgements
We thank A. O. C. Davis, M. Jachura, C. Radzewicz, B. J. Smith, N. Treps and A. Widomski for insightful comments and discussions. We thank Keysight and AM Technologies for equipment loans. This work was funded in part by the First TEAM (project no. POIR.04.04.00-00-5E00/18; M.K., F.S. and M.M.) and HOMING (project no. POIR.04.04.00-00-1E2B/16; M.K. and A.G.) programmes of the Foundation for Polish Science, co-financed by the European Union under the European Regional Development, and in part by the National Science Centre of Poland QuantERA project QuICHE (project no. 2019/32/Z/ST2/00018; M.K. and A.G.) and Preludium (project no. 2019/35/N/ST2/04434; F.S.).
Author information
Authors and Affiliations
Contributions
M.K. conceived and supervised the project. F.S. designed and performed the experiment with a contribution from M.M., who built the photon-pair source and the tunable spectral filter. A.G. contributed to the early stages of the experiment. F.S. and M.K. wrote the manuscript with input from all the authors. F.S. prepared the figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Sunil Mittal and John Donohue for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections S1-S3 and Figs. S1-S2.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sośnicki, F., Mikołajczyk, M., Golestani, A. et al. Interface between picosecond and nanosecond quantum light pulses. Nat. Photon. 17, 761–766 (2023). https://doi.org/10.1038/s41566-023-01214-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01214-z
This article is cited by
-
Frequency shift keying using photonic crystal based ring cavity resonator
Optical and Quantum Electronics (2024)
-
Fresnel time lens empowers quantum networks
Nature Photonics (2023)