Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Demonstration of the quantum principle of least action with single photons

Abstract

The principle of least action is arguably the most fundamental principle in physics as it can be used to derive the equations of motion in various branches of physics. However, this principle has not been experimentally demonstrated at the quantum level because the propagators for Feynman’s path integrals have never been observed. The propagator is a fundamental concept and contains various significant properties of a quantum system in the path integral formulation, so its experimental observation is itself essential in quantum mechanics. Here we theoretically propose and experimentally observe the propagators of single photons based on the method of directly measuring quantum wave functions. Furthermore, we obtain the classical trajectories of single photons in free space and in a harmonic trap based on the extremum of the observed propagators, thereby experimentally demonstrating the quantum principle of least action. Our work paves the way for experimentally exploring the fundamental problems of quantum theory in the formulation of path integrals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of path integrals and measuring method.
Fig. 2: Schematic of the experiment.
Fig. 3: Measured propagators of single photons in free space.
Fig. 4: Classical trajectories of single photons determined by the PLA.
Fig. 5: Theoretical comparison of \({{{{\mathcal{M}}}}}^{{\prime\prime} }(x,t)\) and \({{{{\mathcal{M}}}}}_{\epsilon }^{{\prime\prime} }(x,t-\epsilon )\) in the harmonic potential, where t = 1.1π/ω and ϵ = 0.003(tb − ta).

Similar content being viewed by others

Data availability

The data supporting the results of this study are available within the Article and its Supplementary Information. The raw datasets generated during the study are too large to be publicly shared, but they are available from the corresponding authors upon reasonable request.

References

  1. Rojo, A. & Bloch, A. The Principle of Least Action: History and Physics (Cambridge Univ. Press, 2018).

  2. Feynman, R. P. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20, 367–387 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Feynman, R. P., Hibbs, A. R. & Styer, D. F. Quantum Mechanics and Path Integrals (Dover Publications, 2010).

  4. Lundeen, J. S., Sutherland, B., Patel, A., Stewart, C. & Bamber, C. Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011).

    Article  Google Scholar 

  5. Salvail, J. Z. et al. Full characterization of polarization states of light via direct measurement. Nat. Photon. 7, 316–321 (2013).

    Article  ADS  Google Scholar 

  6. Thekkadath, G. S. et al. Direct measurement of the density matrix of a quantum system. Phys. Rev. Lett. 117, 120401 (2016).

    Article  ADS  Google Scholar 

  7. Lundeen, J. S. & Bamber, C. Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012).

    Article  ADS  Google Scholar 

  8. Malik, M. et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat. Commun. 5, 3115 (2014).

    Article  ADS  Google Scholar 

  9. Shi, Z. et al. Scan-free direct measurement of an extremely high-dimensional photonic state. Optica 2, 388–392 (2015).

    Article  ADS  Google Scholar 

  10. Bolduc, E., Gariepy, G. & Leach, J. Direct measurement of large-scale quantum states via expectation values of non-Hermitian matrices. Nat. Commun. 7, 10439 (2016).

    Article  ADS  Google Scholar 

  11. Vallone, G. & Dequal, D. Strong measurements give a better direct measurement of the quantum wave function. Phys. Rev. Lett. 116, 040502 (2016).

    Article  ADS  MATH  Google Scholar 

  12. Zhang, S. et al. δ-quench measurement of a pure quantum-state wave function. Phys. Rev. Lett. 123, 190402 (2019).

    Article  ADS  Google Scholar 

  13. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988).

    Article  ADS  Google Scholar 

  14. Ritchie, N. W. M., Story, J. G. & Hulet, R. G. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett. 66, 1107–1110 (1991).

    Article  ADS  Google Scholar 

  15. Dressel, J., Malik, M., Miatto, F. M., Jordan, A. N. & Boyd, R. W. Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307–316 (2014).

    Article  ADS  Google Scholar 

  16. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak measurements. Science 319, 787–790 (2008).

    Article  Google Scholar 

  17. Dixon, P. B., Starling, D. J., Jordan, A. N. & Howell, J. C. Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009).

    Article  ADS  Google Scholar 

  18. Hallaji, M., Feizpour, A., Dmochowski, G., Sinclair, J. & Steinberg, A. M. Weak-value amplification of the nonlinear effect of a single photon. Nat. Phys. 13, 540–544 (2017).

    Article  Google Scholar 

  19. Weber, S. J. et al. Mapping the optimal route between two quantum states. Nature 511, 570–573 (2014).

    Article  ADS  Google Scholar 

  20. Murch, K. W., Weber, S. J., Macklin, C. & Siddiqi, I. Observing single quantum trajectories of a superconducting quantum bit. Nature 502, 211–214 (2013).

    Article  Google Scholar 

  21. Kocsis, S. et al. Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011).

    Article  ADS  MATH  Google Scholar 

  22. Pan, Y. et al. Weak-to-strong transition of quantum measurement in a trapped-ion system. Nat. Phys. 16, 1206 (2020).

    Article  Google Scholar 

  23. Kwiat, P. G. et al. High-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  24. Burnham, D. C. & Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs. Phys. Rev. Lett. 25, 84 (1970).

    Article  ADS  Google Scholar 

  25. Li, Y. H. et al. Compact sub-GHz bandwidth single-mode time-energy entangled photon source for high-speed quantum networks. OSA Continuum 4, 608–620 (2021).

    Article  Google Scholar 

  26. Hanbury, B. R. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 117, 27–29 (1956).

    Google Scholar 

  27. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  28. Grangier, P., Roger, G. & Aspect, A. Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences. Europhys. Lett. 1, 173 (1986).

    Article  ADS  Google Scholar 

  29. Bocquillon, E., Couteau, C., Razavi, M., Laflamme, R. & Weihs, G. Coherence measures for heralded single-photon sources. Phys. Rev. A 79, 035801 (2009).

    Article  ADS  Google Scholar 

  30. Wen, Y. L., Zhang, S. C., Yan, H. & Zhu, S. L. Increasing the efficiency of post-selection in direct measurement of the quantum wave function. Chinese Phys. B 31, 034206 (2022).

    Article  ADS  Google Scholar 

  31. von Neumann, J. Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955).

Download references

Acknowledgements

We thank Z. Y. Zhou for helpful discussions. This work was supported by the Key Area Research and Development Program of Guangdong Province (grant nos. 2019B030330001 (S.-L.Z. and H.Y.) and 2020A1515110848 (S.Z.)), the National Key Research and Development Program of China (grant nos. 2020YFA0309500 (S.Z.) and 2022YFA1405300 (S.-L.Z.)), the National Natural Science Foundation of China (grant nos. 12225405 (H.Y.), 12004120 (Y.W.), 62005082 (J.L.), 12074180 (S.-L.Z.) and U20A2074 (H.Y.)) and the Innovation Program for Quantum Science and Technology (grant no. 2021ZD0301705 (H.Y. and S.-L.Z.)).

Author information

Authors and Affiliations

Authors

Contributions

Y.-L.W. and S.-L.Z. developed the theory. Y.-L.W., Y.W., S.Z., H.Y. and S.-L.Z. designed the experiment. Y.-L.W., Y.W., L.-M.T., S.Z., J.L. and J.-S.D. carried out the experiments. Y.-L.W., Y.W., H.Y. and S.-L.Z. conducted the raw data analysis. Y.-L.W., H.Y. and S.-L.Z. wrote the paper, and all authors discussed the content of the paper. H.Y. and S.-L.Z. supervised the project.

Corresponding authors

Correspondence to Hui Yan or Shi-Liang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–7, figs. 1–6 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, YL., Wang, Y., Tian, LM. et al. Demonstration of the quantum principle of least action with single photons. Nat. Photon. 17, 717–722 (2023). https://doi.org/10.1038/s41566-023-01212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01212-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing