Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic freely propagating photonic qubits with negative Wigner functions

Abstract

Engineering the quantum states of freely propagating light is of paramount importance for quantum technologies. As yet, the experimental generation of photonic states with negative Wigner functions has relied intrinsically on probabilistic schemes, heralded by the projection of a quantum measurement. Here we describe the fully deterministic preparation of freely propagating quantum states of light with negative Wigner functions, obtained by mapping the internal state of an intracavity Rydberg superatom onto an optical qubit encoded as a superposition of 0 and 1 photons. This approach enables us to reach a 60% photon generation efficiency in a well-controlled spatiotemporal mode while maintaining strong photon antibunching. By changing the qubit rotation angle, we observe an evolution from quadrature squeezing to Wigner negativity. Our experiment demonstrates this new technique as a viable method for deterministically generating non-Gaussian photonic resources, lifting several major roadblocks in optical quantum engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deterministic generation of number-encoded photonic qubits with an intracavity Rydberg superatom.
Fig. 2: High-efficiency single-photon generation.
Fig. 3: Homodyne tomography of photon-number-encoded photonic qubits \(\left\vert {\psi }_{\theta }\right\rangle\), sorted columnwise by increasing qubit rotation angle θ.
Fig. 4: Statistics of field quadratures.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    ADS  Google Scholar 

  2. Acernese, F. et al. Increasing the astrophysical reach of the Advanced Virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 123, 231108 (2019).

  3. Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  4. Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    ADS  MathSciNet  Google Scholar 

  5. Walschaers, M. Non-Gaussian quantum states and where to find them. PRX quantum 2, 030204 (2021).

    ADS  Google Scholar 

  6. Bertet, P. et al. Direct measurement of the Wigner function of a one-photon Fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002).

    ADS  Google Scholar 

  7. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009).

    ADS  Google Scholar 

  8. Lvovsky, A. I. & Shapiro, J. H. Nonclassical character of statistical mixtures of the single-photon and vacuum optical states. Phys. Rev. A 65, 033830 (2002).

    ADS  Google Scholar 

  9. Babichev, S. A., Ries, J. & Lvovsky, A. I. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys. Lett. 64, 1 (2003).

    ADS  Google Scholar 

  10. Lvovsky, A. I. et al. Production and applications of non-Gaussian quantum states of light. Preprint at https://arxiv.org/abs/2006.16985 (2020).

  11. Hacker, B. et al. Deterministic creation of entangled atom–light Schrödinger-cat states. Nat. Photonics 13, 110–115 (2019).

    ADS  Google Scholar 

  12. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    ADS  Google Scholar 

  13. Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222–225 (2015).

    ADS  Google Scholar 

  14. Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021).

    ADS  Google Scholar 

  15. Vernaz-Gris, P., Huang, K., Cao, M., Sheremet, A. S. & Laurat, J. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nat. Commun. 9, 363 (2018).

    ADS  Google Scholar 

  16. Wang, Y. et al. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics 13, 346–351 (2019).

    ADS  Google Scholar 

  17. Vaneecloo, J., Garcia, S. & Ourjoumtsev, A. Intracavity Rydberg superatom for optical quantum engineering: coherent control, single-shot detection, and optical π phase shift. Phys. Rev. X 12, 021034 (2022).

    Google Scholar 

  18. Tong, D. et al. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004).

    ADS  Google Scholar 

  19. Jia, N. et al. A strongly interacting polaritonic quantum dot. Nat. Phys. 14, 550–554 (2018).

    Google Scholar 

  20. Stanojevic, J. et al. Controlling the quantum state of a single photon emitted from a single polariton. Phys. Rev. A 84, 053830 (2011).

    ADS  Google Scholar 

  21. Gorshkov, A. V., André, A., Lukin, M. D. & Sørensen, A. S. Photon storage in Λ-type optically dense atomic media. I. Cavity model. Phys. Rev. A 76, 033804 (2007).

    ADS  Google Scholar 

  22. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    ADS  Google Scholar 

  23. Straka, I. et al. Quantum non-Gaussian depth of single-photon states. Phys. Rev. Lett. 113, 223603 (2014).

    ADS  Google Scholar 

  24. Kumar, P., Aytür, O. & Huang, J. Squeezed-light generation with an incoherent pump. Phys. Rev. Lett. 64, 1015–1018 (1990).

    ADS  Google Scholar 

  25. Blow, K. J., Loudon, R., Phoenix, S. J. D. & Shepherd, T. J. Continuum fields in quantum optics. Phys. Rev. A 42, 4102–4114 (1990).

    ADS  Google Scholar 

  26. Lvovsky, A. I. Iterative maximum-likelihood reconstruction in quantum homodyne tomography. J. Opt. B 6, S556 (2004).

    ADS  Google Scholar 

  27. Kiilerich, A. H. & Mølmer, K. Input–output theory with quantum pulses. Phys. Rev. Lett. 123, 123604 (2019).

    ADS  Google Scholar 

  28. Kiilerich, A. H. & Mølmer, K. Quantum interactions with pulses of radiation. Phys. Rev. A 102, 023717 (2020).

    ADS  MathSciNet  Google Scholar 

  29. Resch, K. J., Lundeen, J. S. & Steinberg, A. M. Quantum state preparation and conditional coherence. Phys. Rev. Lett. 88, 113601 (2002).

    ADS  Google Scholar 

  30. Lvovsky, A. I. & Mlynek, J. Quantum-optical catalysis: generating nonclassical states of light by means of linear optics. Phys. Rev. Lett. 88, 250401 (2002).

    ADS  Google Scholar 

  31. Carmichael, H. J. Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790–2793 (1985).

    ADS  Google Scholar 

  32. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    ADS  Google Scholar 

  33. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    ADS  Google Scholar 

  34. Morin, O., Körber, M., Langenfeld, S. & Rempe, G. Deterministic shaping and reshaping of single-photon temporal wave functions. Phys. Rev. Lett. 123, 133602 (2019).

    ADS  MathSciNet  Google Scholar 

  35. Schupp, J. et al. Interface between trapped-ion qubits and traveling photons with close-to-optimal efficiency. PRX quantum 2, 020331 (2021).

    ADS  Google Scholar 

  36. Ornelas-Huerta, D. P. et al. On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble. Optica 7, 813–819 (2020).

    ADS  Google Scholar 

  37. Schlagmüller, M. et al. Ultracold chemical reactions of a single Rydberg atom in a dense gas. Phys. Rev. X 6, 031020 (2016).

    Google Scholar 

  38. Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9, 853–858 (2022).

    ADS  Google Scholar 

  39. Stolz, T. et al. Quantum-logic gate between two optical photons with an average efficiency above 40%. Phys. Rev. X 12, 021035 (2022).

    Google Scholar 

  40. Yang, C.-W. et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nat. Photonics 16, 658–661 (2022).

    ADS  Google Scholar 

  41. Beterov, I. I. et al. Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade. Phys. Rev. A 88, 010303 (2013).

    ADS  Google Scholar 

  42. Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    ADS  MathSciNet  Google Scholar 

  43. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

    ADS  Google Scholar 

  44. Picken, C. J., Legaie, R., McDonnell, K. & Pritchard, J. D. Entanglement of neutral-atom qubits with long ground-Rydberg coherence times. Quantum Sci. Technol. 4, 015011 (2018).

    ADS  Google Scholar 

  45. Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    ADS  Google Scholar 

  46. Schmidt-Eberle, S., Stolz, T., Rempe, G. & Dürr, S. Dark-time decay of the retrieval efficiency of light stored as a Rydberg excitation in a noninteracting ultracold gas. Phys. Rev. A 101, 013421 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the ERC Starting Grant 677470 SEAQUEL and the CIFAR Azrieli Global Scholars program. We thank P. Travers for technical support, and S. Ćuk and M. Enault-Dautheribes for their assistance at the early stage of the project.

Author information

Authors and Affiliations

Authors

Contributions

J.V., S.G. and A.O. built the experimental setup. V.M. and S.G. carried out the measurements. V.M., J.V. and S.G. performed the data analysis. A.O. developed the theory and numerical simulations. S.G. and A.O. wrote the paper with input from all authors.

Corresponding author

Correspondence to Alexei Ourjoumtsev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Adam Miranowicz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magro, V., Vaneecloo, J., Garcia, S. et al. Deterministic freely propagating photonic qubits with negative Wigner functions. Nat. Photon. 17, 688–693 (2023). https://doi.org/10.1038/s41566-023-01196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01196-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing