Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Short pulse generation from a graphene-coupled passively mode-locked terahertz laser

Abstract

The generation of stable trains of ultrashort (femtosecond to picosecond), terahertz-frequency radiation pulses with large instantaneous intensities is an underlying requirement for the investigation of light–matter interactions for metrology and ultrahigh-speed communications. In solid-state electrically pumped lasers, the primary route to generate short pulses is through passive mode-locking; however, this has not yet been achieved in the terahertz range, defining one of the longest standing goals over the past two decades. In fact, the realization of passive mode-locking has long been assumed to be inherently hindered by the fast recovery times associated with the intersubband gain of terahertz lasers. Here we demonstrate a self-starting miniaturized short pulse terahertz laser, exploiting an original device architecture that includes the surface patterning of multilayer-graphene saturable absorbers distributed along the entire cavity of a double-metal semiconductor 2.30–3.55 THz wire laser. Self-starting pulsed emission with 4.0-ps-long pulses is demonstrated in a compact, all-electronic, all-passive and inexpensive configuration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device schematics and optical simulations.
Fig. 2: Electrical and optical characterization of the DGSA-QCL.
Fig. 3: Terahertz TDS emission profiles.
Fig. 4: Maxwell–Bloch dynamical simulations.

Similar content being viewed by others

Data availability

The data presented in this study are available on reasonable request from the corresponding author.

Code availability

The relevant computer codes supporting this study are available from the authors on reasonable request.

References

  1. Haus, H. A. Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000).

    Article  ADS  Google Scholar 

  2. Perego, A. M. et al. Coherent master equation for laser modelocking. Nat. Commun. 11, 311 (2020).

    Article  ADS  Google Scholar 

  3. Cundiff, S. T. & Ye, J. Phase stabilization of mode-locked lasers. J. Mod. Opt. 52, 201–219 (2005).

    Article  ADS  Google Scholar 

  4. Du, T. et al. 1.2-W Average-power, 700-W peak-power, 100-ps dissipative soliton resonance in a compact Er:Yb co-doped double-clad fiber laser. Opt. Lett. 42, 462–465 (2017).

    Article  ADS  Google Scholar 

  5. Tang, W. et al. High-peak-power mode-locking pulse generation in a dual-loss-modulated laser with BP-SA and EOM. Opt. Lett. 42, 4820–4823 (2017).

    Article  ADS  Google Scholar 

  6. Rausch, S. et al. Controlled waveforms on the single-cycle scale from a femtosecond oscillator. Opt. Express 16, 9739–9745 (2008).

    Article  ADS  Google Scholar 

  7. Zewail, A. H. Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).

    Article  Google Scholar 

  8. Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    Article  ADS  Google Scholar 

  9. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 1–16 (2019).

    Article  Google Scholar 

  10. Keller, U. et al. Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2, 435–453 (1996).

    Article  ADS  Google Scholar 

  11. Komarov, A., Leblond, H. & Sanchez, F. Passive harmonic mode-locking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267, 162–169 (2006).

    Article  ADS  Google Scholar 

  12. Haus, H. A., Fujimoto, J. G. & Ippen, E. P. Structures for additive pulse mode locking. JOSA B 8, 2068–2076 (1991).

    Article  ADS  Google Scholar 

  13. Lu, H., Xu, H., Zhao, J. & Hou, D. A deep ultraviolet mode-locked laser based on a neural network. Sci Rep. 10, 116 (2020).

    Article  ADS  Google Scholar 

  14. Qin, Z. et al. Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength. Opt. Express 26, 8224–8231 (2018).

    Article  ADS  Google Scholar 

  15. Fülöp, J. A., Tzortzakis, S. & Kampfrath, T. Laser-driven strong-field terahertz sources. Adv. Opt. Mater. 8, 1900681 (2020).

    Article  Google Scholar 

  16. Gollner, C. et al. Highly efficient THz generation by optical rectification of mid-IR pulses in DAST. APL Photon. 6, 046105 (2021).

    Article  ADS  Google Scholar 

  17. Vinokurov, N. Free electron lasers as a high-power terahertz sources. J. Infrared Millim. Terahertz Waves 32, 1123–1143 (2011).

    Article  Google Scholar 

  18. Vitiello, M. S. & Tredicucci, A. Physics and technology of Terahertz quantum cascade lasers. Adv. Phys. X 6, 1893809 (2021).

    Google Scholar 

  19. Khalatpour, A. et al. Terahertz semiconductor laser source at −12 C. Preprint at https://doi.org/10.48550/arXiv.2211.08125 (2022).

  20. Wang, F. et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser. Laser Photon. Rev. 11, 1700013 (2017).

    Article  ADS  Google Scholar 

  21. Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis. Nat. Photon. 5, 377–377 (2011).

    Article  ADS  Google Scholar 

  22. Bachmann, D. et al. Short pulse generation and mode control of broadband terahertz quantum cascade lasers. Optica 3, 1087 (2016).

    Article  ADS  Google Scholar 

  23. Wang, F. et al. Ultrafast response of harmonic modelocked THz lasers. Light: Sci. Appl. 9, 51 (2020).

    Article  ADS  Google Scholar 

  24. Piccardo, M. & Capasso, F. Laser frequency combs with fast gain recovery: physics and applications. Laser Photon. Rev. 16, 2100403 (2022).

    Article  ADS  Google Scholar 

  25. Riepl, J. et al. Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser. Light: Sci. Appl. 10, 246 (2021).

    Article  ADS  Google Scholar 

  26. Derntl, C. G. et al. Gain dynamics in a heterogeneous terahertz quantum cascade laser. Appl. Phys. Lett. 113, 181102 (2018).

    Article  ADS  Google Scholar 

  27. Tzenov, P. et al. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers. New J. Phys. 20, 053055 (2018).

    Article  ADS  Google Scholar 

  28. Henry, N., Burghoff, D., Hu, Q. & Khurgin, J. B. Study of spatio-temporal character of frequency combs generated by quantum cascade lasers. IEEE J. Sel. Top. Quantum Electron. 25, 1–9 (2019).

    Article  Google Scholar 

  29. Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

    Article  ADS  Google Scholar 

  30. Kuizenga, D. & Siegman, A. FM and AM mode locking of the homogeneous laser—part I: theory. IEEE J. Quantum Electron. 6, 694–708 (1970).

    Article  ADS  Google Scholar 

  31. Prati, F. et al. Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics 10, 195–207 (2021).

    Article  Google Scholar 

  32. Meng, B. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142–147 (2022).

    Article  ADS  Google Scholar 

  33. Neu, J. & Schmuttenmaer, C. A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 124, 231101 (2018).

    Article  ADS  Google Scholar 

  34. Talukder, M. A. & Menyuk, C. R. Self-induced transparency modelocking of quantum cascade lasers in the presence of saturable nonlinearity and group velocity dispersion. Opt. Express 18, 5639 (2010).

    Article  ADS  Google Scholar 

  35. Choi, H. et al. Ultrafast Rabi flopping and coherent pulse propagation in a quantum cascade laser. Nat. Photon. 4, 706–710 (2010).

    Article  ADS  Google Scholar 

  36. Li, L. et al. Broadband heterogeneous terahertz frequency quantum cascade laser. Electron. Lett. 54, 1229–1231 (2018).

  37. Garrasi, K. et al. High dynamic range, heterogeneous, terahertz quantum cascade lasers featuring thermally tunable frequency comb operation over a broad current range. ACS Photon. 6, 73–78 (2019).

    Article  Google Scholar 

  38. Bianchi, V. et al. Terahertz saturable absorbers from liquid phase exfoliation of graphite. Nat. Commun. 8, 15763 (2017).

    Article  ADS  Google Scholar 

  39. Brida, D. et al. Ultrafast collinear scattering and carrier multiplication in graphene. Nat. Commun. 4, 1987 (2013).

    Article  ADS  Google Scholar 

  40. Tomadin, A., Brida, D., Cerullo, G., Ferrari, A. C. & Polini, M. Nonequilibrium dynamics of photoexcited electrons in graphene: collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013).

    Article  ADS  Google Scholar 

  41. Paiella, R. et al. Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. Science 290, 1739–1742 (2000).

    Article  ADS  Google Scholar 

  42. Hafez, H. A. et al. Terahertz nonlinear optics of graphene: from saturable absorption to high-harmonics generation. Adv. Opt. Mater. 8, 1900771 (2020).

    Article  Google Scholar 

  43. Consolino, L. et al. Fully phase-stabilized quantum cascade laser frequency comb. Nat. Commun. 10, 1–7 (2019).

    Article  Google Scholar 

  44. Mezzapesa, F. P. et al. Terahertz frequency combs exploiting an on-chip, solution-processed, graphene-quantum cascade laser coupled-cavity. ACS Photon. 7, 3489–3498 (2020).

    Article  Google Scholar 

  45. Burghoff, D., Yang, Y., Reno, J. L. & Hu, Q. Dispersion dynamics of quantum cascade lasers. Optica 3, 1362 (2016).

    Article  ADS  Google Scholar 

  46. Oustinov, D. et al. Phase seeding of a terahertz quantum cascade laser. Nat. Commun. 1, 69 (2010).

    Article  ADS  Google Scholar 

  47. Beiser, M., Opačak, N., Hillbrand, J., Strasser, G. & Schwarz, B. Engineering the spectral bandwidth of quantum cascade laser frequency combs. Opt. Lett. 46, 3416–3419 (2021).

    Article  ADS  Google Scholar 

  48. Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. 127, 093902 (2021).

    Article  ADS  Google Scholar 

  49. Cavalié, P. et al. High order sideband generation in terahertz quantum cascade lasers. Appl. Phys. Lett. 102, 221101 (2013).

    Article  ADS  Google Scholar 

  50. Gallot, G., Zhang, J., McGowan, R. W., Jeon, T.-I. & Grischkowsky, D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett. 74, 3450–3452 (1999).

    Article  ADS  Google Scholar 

  51. Tzenov, P., Burghoff, D., Hu, Q. & Jirauschek, C. Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. Opt. Express 24, 23232–23247 (2016).

    Article  ADS  Google Scholar 

  52. Jirauschek, C., Riesch, M. & Tzenov, P. Optoelectronic device simulations based on macroscopic Maxwell–Bloch equations. Adv. Theory Simul. 2, 1900018 (2019).

    Article  Google Scholar 

  53. Silvestri, C., Columbo, L. L., Brambilla, M. & Gioannini, M. Coherent multi-mode dynamics in a quantum cascade laser: amplitude- and frequency-modulated optical frequency combs. Opt. Express 28, 23846–23861 (2020).

    Article  ADS  Google Scholar 

  54. Haus, H. A. Theory of mode locking with a fast saturable absorber. J. Appl. Phys. 46, 3049–3058 (1975).

    Article  ADS  Google Scholar 

  55. Pogna, E. A. A. et al. Hot-carrier cooling in high-quality graphene Is intrinsically limited by optical phonons. ACS Nano 15, 11285–11295 (2021).

    Article  Google Scholar 

  56. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  57. Choi, H. et al. Gain recovery dynamics and photon-driven transport in quantum cascade lasers. Phys. Rev. Lett. 100, 167401 (2008).

    Article  ADS  Google Scholar 

  58. Mezzapesa, F. P. et al. Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs. Opt. Express 27, 20231–20240 (2019).

    Article  ADS  Google Scholar 

  59. Kurtner, F. X., der Au, J. A. & Keller, U. Mode-locking with slow and fast saturable absorbers-what’s the difference? IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Research Council through the ERC Consolidator Grant (681379) SPRINT (MSV), FET Open project EXTREME IR (944735) (MSV, SSD), Quantera Project QATACOMB (MSV, SSD, CJ), ERC GSYNCOR (ACF), HETERO2D (ACF), EIC CHARM (ACF), the French National Research Agency (ANR-18-CE24-0013-02 - ‘TERASEL’) (SD), and the EPSRC (UK) programme grant ‘HyperTerahertz’ (EP/P021859/1) (EHL, LL, AGD), EP/L016087/1, EP/K01711X/1, EP/K017144/1, EP/N010345/1, EP/V000055/1 (ACF) and Graphene Flagship (MSV, ACF).

Author information

Authors and Affiliations

Authors

Contributions

M.S.V. and V.P. conceived the concept. E.R. fabricated the devices, set up the transport and optical experiments. V.P. performed numerical simulations and interpreted the data. E.R., S.S.D., S.K. and A.D.V. acquired the experimental data. L.L, A.G.D. and E.H.L grew by the QCL structure molecular beam epitaxy. C.J. and L.S. developed the theoretical model. The manuscript was written by M.S.V. and V.P. M.S.V. coordinated and supervised the project. All authors contributed to the final version of the manuscript and discussed the results.

Corresponding author

Correspondence to Miriam S. Vitiello.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Mahmood Bagheri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Supplementary Discussion 1–4, which is broken down as follows: (1) flowchart of the fabrication process; (2) measurement of the refractive index in MLG; (3) DGSA-QCL with different cavity dimensions and MLG thickness; and (4) micro-Raman characterization.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccardi, E., Pistore, V., Kang, S. et al. Short pulse generation from a graphene-coupled passively mode-locked terahertz laser. Nat. Photon. 17, 607–614 (2023). https://doi.org/10.1038/s41566-023-01195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01195-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing