Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A photonic entanglement filter with Rydberg atoms

Abstract

Devices capable of deterministically manipulating photonic entanglement are of paramount importance, because photons are ideal messengers for quantum information. However, due to the non-interacting nature of photons, many photonic quantum operations have only been demonstrated using probabilistic linear-optical approaches, leading to an overwhelming resource overhead and poor scalability. Here we report a novel entanglement filter that transmits the desired photonic entangled state and blocks unwanted ones. In contrast to previous probabilistic approaches, our experiment exploits the strong and controllable photon–photon interaction enabled by Rydberg atoms, so the filtering of undesired states succeeds in every experimental trial. Photonic entanglement with near-unity fidelity can be extracted from an input state with an arbitrarily low initial fidelity. The protocol is inherently robust, and succeeds both in the Rydberg blockade regime and in the interaction-induced dissipation regime. Such an entanglement filter opens new routes towards achieving scalable photonic quantum information processing with multiple ensembles of Rydberg atoms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the experimental protocol.
Fig. 2: Blockade-based EF.
Fig. 3: Extracting entanglement from an arbitrarily noisy input.
Fig. 4: Interaction-induced two-body decoherence.
Fig. 5: EF via dissipative quantum evolution.

Data availability

Data supporting the plots within this paper are available through Zenodo at https://doi.org/10.5281/zenodo.7631438. Further information is available from the corresponding author upon reasonable request.

Code availability

The code used in this study is available from the corresponding author upon reasonable request.

References

  1. Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  2. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  3. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  4. Pan, J.-W. et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys. 84, 777–838 (2012).

    Article  ADS  Google Scholar 

  5. O’brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nat. Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  7. Komar, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

    Article  Google Scholar 

  8. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hofmann, H. F. & Takeuchi, S. Quantum filter for nonlocal polarization properties of photonic qubits. Phys. Rev. Lett. 88, 147901 (2002).

    Article  ADS  Google Scholar 

  10. Yamamoto, T., Koashi, M., Özdemir, Ş. K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

    Article  ADS  Google Scholar 

  11. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  12. Li, Z.-D. et al. Experimental quantum repeater without quantum memory. Nat. Photon. 13, 644–648 (2019).

    Article  ADS  Google Scholar 

  13. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  14. Pan, J.-W., Simon, C., Brukner, Č. & Zeilinger, A. Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001).

    Article  ADS  Google Scholar 

  15. Okamoto, R. et al. An entanglement filter. Science 323, 483–485 (2009).

    Article  ADS  Google Scholar 

  16. Zhou, X.-Q. et al. Adding control to arbitrary unknown quantum operations. Nat. Commun. 2, 413 (2011).

    Article  ADS  Google Scholar 

  17. Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    Article  ADS  Google Scholar 

  18. Dudin, Y. & Kuzmich, A. Strongly interacting Rydberg excitations of a cold atomic gas. Science 336, 887–889 (2012).

    Article  ADS  Google Scholar 

  19. Maxwell, D. et al. Storage and control of optical photons using Rydberg polaritons. Phys. Rev. Lett. 110, 103001 (2013).

    Article  ADS  Google Scholar 

  20. Ornelas-Huerta, D. P. et al. On-demand indistinguishable single photons from an efficient and pure source based on a Rydberg ensemble. Optica 7, 813–819 (2020).

    Article  ADS  Google Scholar 

  21. Shi, S. et al. High-fidelity photonic quantum logic gate based on near-optimal Rydberg single-photon source. Nat. Commun. 13, 4454 (2022).

    Article  ADS  Google Scholar 

  22. Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

    Article  ADS  Google Scholar 

  23. Baur, S., Tiarks, D., Rempe, G. & Dürr, S. Single-photon switch based on Rydberg blockade. Phys. Rev. Lett. 112, 073901 (2014).

    Article  ADS  Google Scholar 

  24. Tresp, C. et al. Single-photon absorber based on strongly interacting Rydberg atoms. Phys. Rev. Lett. 117, 223001 (2016).

    Article  ADS  Google Scholar 

  25. Busche, H. et al. Contactless nonlinear optics mediated by long-range Rydberg interactions. Nat. Phys. 13, 655–658 (2017).

    Article  Google Scholar 

  26. Thompson, J. D. et al. Symmetry-protected collisions between strongly interacting photons. Nature 542, 206–209 (2017).

    Article  ADS  Google Scholar 

  27. Li, L., Dudin, Y. & Kuzmich, A. Entanglement between light and an optical atomic excitation. Nature 498, 466–469 (2013).

    Article  ADS  Google Scholar 

  28. Sun, P.-F. et al. Deterministic time-bin entanglement between a single photon and an atomic ensemble. Phys. Rev. Lett. 128, 060502 (2022).

    Article  ADS  Google Scholar 

  29. Yang, C.-W. et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nat. Photon. 16, 658–661 (2022).

    Article  ADS  Google Scholar 

  30. Tiarks, D., Schmidt-Eberle, S., Stolz, T., Rempe, G. & Dürr, S. A photon–photon quantum gate based on Rydberg interactions. Nat. Phys. 15, 124–126 (2019).

    Article  Google Scholar 

  31. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    Article  ADS  Google Scholar 

  32. Bariani, F., Dudin, Y., Kennedy, T. & Kuzmich, A. Dephasing of multiparticle Rydberg excitations for fast entanglement generation. Phys. Rev. Lett. 108, 030501 (2012).

    Article  ADS  Google Scholar 

  33. Stanojevic, J. et al. Generating non-Gaussian states using collisions between Rydberg polaritons. Phys. Rev. A 86, 021403 (2012).

    Article  ADS  Google Scholar 

  34. Niemietz, D., Farrera, P., Langenfeld, S. & Rempe, G. Nondestructive detection of photonic qubits. Nature 591, 570–574 (2021).

    Article  ADS  Google Scholar 

  35. Xu, W. et al. Fast preparation and detection of a Rydberg qubit using atomic ensembles. Phys. Rev. Lett. 127, 050501 (2021).

    Article  ADS  Google Scholar 

  36. Yang, C.-W. et al. Deterministic measurement of a Rydberg superatom qubit via cavity-enhanced single-photon emission. Optica 9, 853–858 (2022).

    Article  ADS  Google Scholar 

  37. Otterbach, J., Moos, M., Muth, D. & Fleischhauer, M. Wigner crystallization of single photons in cold Rydberg ensembles. Phys. Rev. Lett. 111, 113001 (2013).

    Article  ADS  Google Scholar 

  38. Sahay, R., Machado, F., Ye, B., Laumann, C. R. & Yao, N. Y. Emergent ergodicity at the transition between many-body localized phases. Phys. Rev. Lett. 126, 100604 (2021).

    Article  ADS  Google Scholar 

  39. Li, K., Wang, J.-H., Yang, Y.-B. & Xu, Y. Symmetry-protected topological phases in a Rydberg glass. Phys. Rev. Lett. 127, 263004 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Su and K. Zhang for valuable discussions and C. Du, F.-Y. Kuang, Y. Cai and D.-S. Xiang for experimental assistance. This work was supported by the National Key Research and Development Program of China (grant no. 2021YFA1402003), the National Natural Science Foundation of China (grants nos. U21A6006, 12004127 and 12104173) and the Fundamental Research Funds for the Central Universities (HUST). Y.C. is supported by the National Natural Science Foundation of China (grant no. U2141237). T.S. is supported by the National Key Research and Development Program of China (grant no. 2017YFA0718304) and the National Natural Science Foundation of China (grants nos. 11974363, 12135018 and 12047503).

Author information

Authors and Affiliations

Authors

Contributions

G.-S.Y., B.X. and S.S. built the experimental set-up, performed the measurements and carried out data analysis. Y.C., G.-S.Y. and T.S. developed the theoretical model and accomplished numerical simulations. L.L. conceived the idea and supervised the experiment. G.-S.Y., Y.C. and L.L. wrote the paper with input from all authors.

Corresponding author

Correspondence to Lin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

PDF contains nine supplementary figures, two tables and their legends.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, GS., Xu, B., Chang, Y. et al. A photonic entanglement filter with Rydberg atoms. Nat. Photon. 17, 538–543 (2023). https://doi.org/10.1038/s41566-023-01194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01194-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing