In recent decades, progress in developing better nonlinear materials has not been as rapid as wished. Here I propose that this may be explained by considering the simple view of nonlinear optical phenomena as being determined mostly by the length of interaction time between photons and matter. Tentative routes towards improvements in the efficiency of nonlinear optical phenomena are suggested.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Terhune, R. W., Maker, P. D. & Savage, C. M. Phys. Rev. Lett. 8, 404–406 (1962).
Bloembergen, N. Nonlinear Optics; A Lecture Note and Reprint Volume (Benjamin, 1965).
Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).
Nozaki, K. et al. Nat. Photon. 4, 477–483 (2010).
Chai, Z. et al. Adv. Opt. Mater. 5, 1600665 (2017).
Svelto, O. Principles of Lasers (Plenum, 1976).
Siegman, A. E. Lasers (University Science Books, 1986).
Dudley, J. M., Genty, G. & Coen, S. Rev. Mod. Phys. 78, 1135 (2006).
Mingaleev, S. & Kivshar, Y. Opt. Photonics News 13, 48–51 (2002).
Wetzstein, G. et al. Nature 588, 39–47 (2020).
Millar, D. S. et al. IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
Levenson, M. Introduction to Nonlinear Laser Spectroscopy 2nd edition (Elsevier, 2012).
You, J., Bongu, S., Bao, Q. & Panoiu, N. Nanophotonics 8, 63–97 (2019).
Hong, X. et al. Research https://doi.org/10.34133/2020/9085782 (2020).
Lee, J. et al. Nature 511, 65–69 (2014).
Ravindra, N., Auluck, S. & Srivastava, V. Phys. Status Solidi B 93, K155–K160 (1979).
Harrison, W. A. Solid State Theory (Courier, 1980).
Khurgin, J. B., Clerici, M. & Kinsey, N. Laser Photonics Rev 15, 2000291 (2021).
Khurgin, J. B. Preprint at https://arxiv.org/abs/2207.05569 (2022).
Boyd, R. W. Nonlinear Optics (Academic, 2020).
Rajpurohit, S., Das Pemmaraju, C., Ogitsu, T. & Tan, L. Z. Phys. Rev. B 105, 094307 (2022).
Ward, J. Rev. Mod. Phys. 37, 1 (1965).
Spillane, S. M. et al. Phys. Rev. Lett. 100, 233602 (2008).
Kumari, V., Kumar, V., Malik, B. P., Mehra, R. M. & Mohan, D. Opt. Commun. 285, 2182–2188 (2012).
Karabulut, İ. & Baskoutas, S. J. Appl. Phys. 103, 073512 (2008).
Schmitt-Rink, S., Chemla, D. & Miller, D. A. Adv. Phys. 38, 89–188 (1989).
Secondo, R., Khurgin, J. & Kinsey, N. Opt. Mater. Express 10, 1545–1560 (2020).
Minovich, A., Neshev, D. N., Dreischuh, A., Krolikowski, W. & Kivshar, Y. S. Opt. Lett. 32, 1599–1601 (2007).
Schmitt-Rink, S., Chemla, D. & Miller, D. A. Phys. Rev. B 32, 6601 (1985).
Takagahara, T. Phys. Rev. B 36, 9293 (1987).
Khurgin, J. Appl. Phys. Lett. 104, 161116 (2014).
Kinsey, N. & Khurgin, J. Opt. Mater. Express 9, 2793–2796 (2019).
Shah, J. & Lucent Technologies. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures 2nd enlarged edition (Springer, 1999).
Rabinovich, W., Beadie, G. & Katzer, D. IEEE J. Quantum Electron. 34, 975–981 (1998).
Khurgin, J. B. Adv. Opt. Photonics 2, 287–318 (2010).
Hamachi, Y., Kubo, S. & Baba, T. Opt. Lett. 34, 1072–1074 (2009).
Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Opt. Express 23, 14922–14936 (2015).
Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Nat. Photon. 11, 543–554 (2017).
Harris, S. E., Field, J. & Imamoğlu, A. Phys. Rev. Lett. 64, 1107 (1990).
Sain, B., Meier, C. & Zentgraf, T. Adv. Photonics 1, 024002 (2019).
Carletti, L., Koshelev, K., De Angelis, C. & Kivshar, Y. Phys. Rev. Lett. 121, 033903 (2018).
Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. ACS Nano 11, 953–960 (2017).
Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Appl. Phys. Rev. 7, 021306 (2020).
Xuan, Y. et al. Optica 3, 1171–1180 (2016).
Miri, M.-A. & Alù, A. Science 363, eaar7709 (2019).
Khurgin, J. B., Obeidat, A., Lee, S. & Ding, Y. J. JOSA B 14, 1977–1983 (1997).
Kaminskii, A. et al. Appl. Phys. B 93, 865–872 (2008).
Li, S., Khurgin, J. B. & Lawandy, N. M. Opt. Commun. 115, 466–470 (1995).
Acknowledgements
The author appreciates support by the DARPA DSO NLM programme, and the encouragement and assistance of his co-workers P. Noir and S. Artois.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Khurgin, J.B. Nonlinear optics from the viewpoint of interaction time. Nat. Photon. 17, 545–551 (2023). https://doi.org/10.1038/s41566-023-01191-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01191-3