Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Nonlinear optics from the viewpoint of interaction time

In recent decades, progress in developing better nonlinear materials has not been as rapid as wished. Here I propose that this may be explained by considering the simple view of nonlinear optical phenomena as being determined mostly by the length of interaction time between photons and matter. Tentative routes towards improvements in the efficiency of nonlinear optical phenomena are suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equivalence of switching via refractive index modulation and measuring the change of the photon momentum.
Fig. 2: Optical nonlinearity is related to optical breakdown.
Fig. 3: Feynman diagram for third-order nonlinearity.

References

  1. Terhune, R. W., Maker, P. D. & Savage, C. M. Phys. Rev. Lett. 8, 404–406 (1962).

    Article  ADS  Google Scholar 

  2. Bloembergen, N. Nonlinear Optics; A Lecture Note and Reprint Volume (Benjamin, 1965).

  3. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

  4. Nozaki, K. et al. Nat. Photon. 4, 477–483 (2010).

    Article  ADS  Google Scholar 

  5. Chai, Z. et al. Adv. Opt. Mater. 5, 1600665 (2017).

    Article  Google Scholar 

  6. Svelto, O. Principles of Lasers (Plenum, 1976).

  7. Siegman, A. E. Lasers (University Science Books, 1986).

  8. Dudley, J. M., Genty, G. & Coen, S. Rev. Mod. Phys. 78, 1135 (2006).

    Article  ADS  Google Scholar 

  9. Mingaleev, S. & Kivshar, Y. Opt. Photonics News 13, 48–51 (2002).

    Article  ADS  Google Scholar 

  10. Wetzstein, G. et al. Nature 588, 39–47 (2020).

    Article  ADS  Google Scholar 

  11. Millar, D. S. et al. IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).

    Article  ADS  Google Scholar 

  12. Levenson, M. Introduction to Nonlinear Laser Spectroscopy 2nd edition (Elsevier, 2012).

  13. You, J., Bongu, S., Bao, Q. & Panoiu, N. Nanophotonics 8, 63–97 (2019).

    Article  Google Scholar 

  14. Hong, X. et al. Research https://doi.org/10.34133/2020/9085782 (2020).

    Article  Google Scholar 

  15. Lee, J. et al. Nature 511, 65–69 (2014).

    Article  ADS  Google Scholar 

  16. Ravindra, N., Auluck, S. & Srivastava, V. Phys. Status Solidi B 93, K155–K160 (1979).

    Article  ADS  Google Scholar 

  17. Harrison, W. A. Solid State Theory (Courier, 1980).

  18. Khurgin, J. B., Clerici, M. & Kinsey, N. Laser Photonics Rev 15, 2000291 (2021).

    Article  ADS  Google Scholar 

  19. Khurgin, J. B. Preprint at https://arxiv.org/abs/2207.05569 (2022).

  20. Boyd, R. W. Nonlinear Optics (Academic, 2020).

  21. Rajpurohit, S., Das Pemmaraju, C., Ogitsu, T. & Tan, L. Z. Phys. Rev. B 105, 094307 (2022).

    Article  ADS  Google Scholar 

  22. Ward, J. Rev. Mod. Phys. 37, 1 (1965).

    Article  ADS  Google Scholar 

  23. Spillane, S. M. et al. Phys. Rev. Lett. 100, 233602 (2008).

    Article  ADS  Google Scholar 

  24. Kumari, V., Kumar, V., Malik, B. P., Mehra, R. M. & Mohan, D. Opt. Commun. 285, 2182–2188 (2012).

    Article  ADS  Google Scholar 

  25. Karabulut, İ. & Baskoutas, S. J. Appl. Phys. 103, 073512 (2008).

    Article  ADS  Google Scholar 

  26. Schmitt-Rink, S., Chemla, D. & Miller, D. A. Adv. Phys. 38, 89–188 (1989).

    Article  ADS  Google Scholar 

  27. Secondo, R., Khurgin, J. & Kinsey, N. Opt. Mater. Express 10, 1545–1560 (2020).

    Article  ADS  Google Scholar 

  28. Minovich, A., Neshev, D. N., Dreischuh, A., Krolikowski, W. & Kivshar, Y. S. Opt. Lett. 32, 1599–1601 (2007).

    Article  ADS  Google Scholar 

  29. Schmitt-Rink, S., Chemla, D. & Miller, D. A. Phys. Rev. B 32, 6601 (1985).

    Article  ADS  Google Scholar 

  30. Takagahara, T. Phys. Rev. B 36, 9293 (1987).

    Article  ADS  Google Scholar 

  31. Khurgin, J. Appl. Phys. Lett. 104, 161116 (2014).

    Article  ADS  Google Scholar 

  32. Kinsey, N. & Khurgin, J. Opt. Mater. Express 9, 2793–2796 (2019).

    Article  ADS  Google Scholar 

  33. Shah, J. & Lucent Technologies. Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures 2nd enlarged edition (Springer, 1999).

  34. Rabinovich, W., Beadie, G. & Katzer, D. IEEE J. Quantum Electron. 34, 975–981 (1998).

    Article  ADS  Google Scholar 

  35. Khurgin, J. B. Adv. Opt. Photonics 2, 287–318 (2010).

    Article  ADS  Google Scholar 

  36. Hamachi, Y., Kubo, S. & Baba, T. Opt. Lett. 34, 1072–1074 (2009).

    Article  ADS  Google Scholar 

  37. Huang, Y., Min, C., Dastmalchi, P. & Veronis, G. Opt. Express 23, 14922–14936 (2015).

    Article  ADS  Google Scholar 

  38. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Nat. Photon. 11, 543–554 (2017).

    Article  Google Scholar 

  39. Harris, S. E., Field, J. & Imamoğlu, A. Phys. Rev. Lett. 64, 1107 (1990).

    Article  ADS  Google Scholar 

  40. Sain, B., Meier, C. & Zentgraf, T. Adv. Photonics 1, 024002 (2019).

    Article  ADS  Google Scholar 

  41. Carletti, L., Koshelev, K., De Angelis, C. & Kivshar, Y. Phys. Rev. Lett. 121, 033903 (2018).

    Article  ADS  Google Scholar 

  42. Grinblat, G., Li, Y., Nielsen, M. P., Oulton, R. F. & Maier, S. A. ACS Nano 11, 953–960 (2017).

    Article  Google Scholar 

  43. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  44. Xuan, Y. et al. Optica 3, 1171–1180 (2016).

    Article  ADS  Google Scholar 

  45. Miri, M.-A. & Alù, A. Science 363, eaar7709 (2019).

    Article  Google Scholar 

  46. Khurgin, J. B., Obeidat, A., Lee, S. & Ding, Y. J. JOSA B 14, 1977–1983 (1997).

    Article  ADS  Google Scholar 

  47. Kaminskii, A. et al. Appl. Phys. B 93, 865–872 (2008).

    Article  ADS  Google Scholar 

  48. Li, S., Khurgin, J. B. & Lawandy, N. M. Opt. Commun. 115, 466–470 (1995).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author appreciates support by the DARPA DSO NLM programme, and the encouragement and assistance of his co-workers P. Noir and S. Artois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob B. Khurgin.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurgin, J.B. Nonlinear optics from the viewpoint of interaction time. Nat. Photon. 17, 545–551 (2023). https://doi.org/10.1038/s41566-023-01191-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01191-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing