Abstract
The capacities of noisy quantum channels capture the ultimate rates of information transmission across quantum communication lines, and the quantum capacity plays a key role in determining the overhead of fault-tolerant quantum computation platforms. Closed formulae for these capacities in bosonic systems were lacking for a key class of non-Gaussian channels, bosonic dephasing channels, which are used to model noise affecting superconducting circuits and fibre-optic communication channels. Here we provide an exact calculation of the quantum, private, two-way assisted quantum and secret-key-agreement capacities of all bosonic dephasing channels. We prove that they are equal to the relative entropy of the distribution underlying the channel with respect to the uniform distribution, solving a problem that was originally posed over a decade ago.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
No data sets were generated during this study.
References
Nielsen, M. A. & Chuang, I. L., Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Shor, P. W., Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994)
Childs, A. M., Maslov, D., Nam, Y., Ross, N. J. & Su, Y. Toward the first quantum simulation with quantum speedup. Proc. Natl Acad. Sci. USA 115, 9456–9461 (2018).
Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th ACM Symposium on Theory of Computing (STOC) 212–219 (Association for Computing Machinery, 1996).
Harrow, A. W., Hassidim, A. & Lloyd, S. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009).
Gilyén, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In Proc. 51st Annual ACM SIGACT Symposium on Theory of Computing 193–204 (Association for Computing Machinery, 2019).
Xu, F., Ma, X., Zhang, Q., Lo, H.-K. & Pan, J.-W. Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92, 025002 (2020).
Schlosshauer, M. Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2005).
Brito, F., DiVincenzo, D. P., Koch, R. H. & Steffen, M. Efficient one- and two-qubit pulsed gates for an oscillator-stabilized Josephson qubit. New J. Phys. 10, 033027 (2008).
Taylor, J. M. et al. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins. Nat. Phys. 1, 177–183 (2005).
Ospelkaus, C. et al. Trapped-ion quantum logic gates based on oscillating magnetic fields. Phys. Rev. Lett. 101, 090502 (2008).
Wanser, K. H. Fundamental phase noise limit in optical fibres due to temperature fluctuations. Electron. Lett. 28, 53–54(1) (1992).
Gordon, J. P. & Mollenauer, L. F. Phase noise in photonic communications systems using linear amplifiers. Opt. Lett. 15, 1351–1353 (1990).
Derickson, D. Fiber Optic Test and Measurement (Prentice Hall, 1998).
Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007).
Jiang, L.-Z. & Chen, X.-Y. Evaluating the quantum capacity of bosonic dephasing channel. Proc. SPIE 7846, 784613 (2010).
Arqand, A., Memarzadeh, L. & Mancini, S. Quantum capacity of a bosonic dephasing channel. Phys. Rev. A 102, 042413 (2020).
Devetak, I. & Shor, P. W. The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Commun. Math. Phys. 256, 287–303 (2005).
Hayashi, M. Quantum Information Theory: Mathematical Foundation 2nd edn (Springer, 2017).
Wilde, M. M. Quantum Information Theory 2nd edn (Cambridge Univ. Press, 2017).
Fawzi, O., Müller-Hermes, A. & Shayeghi, A. A lower bound on the space overhead of fault-tolerant quantum computation. In Proc. 13th Innovations in Theoretical Computer Science Conference (ITCS 2022) Vol. 215 (ed. Braverman, M.) 68:1–68:20 (Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2022).
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).
Takeoka, M., Guha, S. & Wilde, M. M. The squashed entanglement of a quantum channel. IEEE Trans. Inf. Theory 60, 4987–4998 (2014).
Khatri, S. & Wilde, M. M. Principles of quantum communication theory: a modern approach. Preprint at https://arxiv.org/abs/2011.04672v1 (2020).
Wilde, M. M., Tomamichel, M. & Berta, M. Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63, 1792–1817 (2017).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: A vision for the road ahead. Science 362, eaam9288 (2018).
Arqand, A., Memarzadeh, L. & Mancini, S. Energy-constrained LOCC-assisted quantum capacity of bosonic dephasing channel. Preprint at https://arxiv.org/abs/2111.04173 (2021).
Holevo, A. S. & Werner, R. F. Evaluating capacities of bosonic Gaussian channels. Phys. Rev. A 63, 032312 (2001).
Wolf, M. M., Pérez-García, D. & Giedke, G. Quantum capacities of bosonic channels. Phys. Rev. Lett. 98, 130501 (2007).
van Erven, T. & Harremos, P. Rényi divergence and Kullback–Leibler divergence. IEEE Trans. Inf. Theory 60, 3797–3820 (2014).
Fanizza, M., Rosati, M., Skotiniotis, M., Calsamiglia, J. & Giovannetti, V. Squeezing-enhanced communication without a phase reference. Quantum 5, 608 (2021).
Zhuang, Q. Quantum-enabled communication without a phase reference. Phys. Rev. Lett. 126, 060502 (2021).
Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).
Giovannetti, V., García-Patrón, R., J. Cerf, N. & Holevo, A. S. Ultimate classical communication rates of quantum optical channels. Nat. Photonics 8, 796–800 (2014).
Giovannetti, V., Lloyd, S., Maccone, L. & Shor, P. W. Entanglement assisted capacity of the broadband lossy channel. Phys. Rev. Lett. 91, 047901 (2003).
Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).
Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).
Lidar, D. A. & Brun, T. A. (eds) Quantum Error Correction (Cambridge Univ. Press, 2013).
DiVincenzo, D. P., Shor, P. W. & Smolin, J. A. Quantum-channel capacity of very noisy channels. Phys. Rev. A 57, 830–839 (1998).
Smith, G. & Smolin, J. A. Degenerate quantum codes for Pauli channels. Phys. Rev. Lett. 98, 030501 (2007).
Leditzky, F., Leung, D. & Smith, G. Dephrasure channel and superadditivity of coherent information. Phys. Rev. Lett. 121, 160501 (2018).
Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207–235 (2005).
Devetak, I. The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory, 51, 44–55 (2005).
Renes, J. M., Dupuis, F. & Renner, R. Efficient polar coding of quantum information. Phys. Rev. Lett. 109, 050504 (2012).
Renes, J. M. & Wilde, M. M. Polar codes for private and quantum communication over arbitrary channels. IEEE Trans. Inf. Theory 60, 3090–3103 (2014).
Tomamichel, M., Wilde, M. M. & Winter, A. Strong converse rates for quantum communication. IEEE Trans. Inf. Theory 63, 715–727 (2017).
Szegő, G. Beiträge zur Theorie der Toeplitzschen Formen. Math. Z. 6, 167–202 (1920).
Serra-Capizzano, S. Test functions, growth conditions and Toeplitz matrices. Rend. Circ. Mat. Palermo Ser. II 68(Suppl.), 791–795 (2002).
Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).
Niset, J., Fiurasek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).
Müller-Hermes, A. Transposition in Quantum Information Theory. MSc thesis, Technische Universität München (2012).
Wilde, M. M. & Qi, H. Energy-constrained private and quantum capacities of quantum channels. IEEE Trans. Inf. Theory 64, 7802–7827 (2018).
Bennett, C. H., DiVincenzo, D. P. & Smolin, J. A. Capacities of quantum erasure channels. Phys. Rev. Lett. 78, 3217–3220 (1997).
Pirandola, S., García-Patrón, R., Braunstein, S. L. & Lloyd, S. Direct and reverse secret-key capacities of a quantum channel. Phys. Rev. Lett. 102, 050503 (2009).
Leviant, P., Xu, Q., Jiang, L. & Rosenblum, S. Quantum capacity and codes for the bosonic loss-dephasing channel. Quantum 6, 821 (2022).
Sharma, K., Wilde, M. M., Adhikari, S. & Takeoka, M. Bounding the energy-constrained quantum and private capacities of phase-insensitive bosonic Gaussian channels. New J. Phys. 20, 063025 (2018).
Rosati, M., Mari, A. & Giovannetti, V. Narrow bounds for the quantum capacity of thermal attenuators. Nat. Commun. 9, 4339 (2018).
Noh, K., Albert, V. V. & Jiang, L. Quantum capacity bounds of Gaussian thermal loss channels and achievable rates with Gottesman–Kitaev–Preskill codes. IEEE Trans. Inf. Theory 65, 2563–2582 (2019).
Fanizza, M., Kianvash, F. & Giovannetti, V. Estimating quantum and private capacities of Gaussian channels via degradable extensions. Phys. Rev. Lett. 127, 210501 (2021).
Holevo, A. S. Entanglement-assisted capacities of constrained quantum channels. Theory Probab. Appl. 48, 243–255 (2004).
Horodecki, K., Horodecki, M., Horodecki, P. & Oppenheim, J. Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005).
Horodecki, K., Horodecki, M., Horodecki, P. & Oppenheim, J. General paradigm for distilling classical key from quantum states. IEEE Trans. Inf. Theory 55, 1898–1929 (2009).
Acknowledgements
We thank S. Mancini for discussions. L.L. was partially supported by the Alexander von Humboldt Foundation. M.M.W. acknowledges support from the National Science Foundation under grant no. 2014010.
Author information
Authors and Affiliations
Contributions
Both authors contributed to all aspects of this manuscript and to the writing of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks Javier Fonollosa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–4, Figs. 1–3, refs. 1–75 and detailed mathematical derivations of claims made in the text.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lami, L., Wilde, M.M. Exact solution for the quantum and private capacities of bosonic dephasing channels. Nat. Photon. 17, 525–530 (2023). https://doi.org/10.1038/s41566-023-01190-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01190-4