Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-rate entanglement between a semiconductor spin and indistinguishable photons

Abstract

Photonic graph states—quantum light states where multiple photons are mutually entangled—are key resources for optical quantum technologies. They are notably at the core of error-corrected measurement-based optical quantum computing and all-optical quantum networks. In the discrete variable framework, these applications require the high-efficiency generation of cluster states whose nodes are indistinguishable photons. Such photonic cluster states can be generated with heralded single-photon sources and probabilistic quantum gates, yet with challenging efficiency and scalability. Spin–photon entanglement has been proposed to deterministically generate linear cluster states. First demonstrations have been obtained with semiconductor spins, achieving high photon indistinguishability, and most recently with atomic systems with a high collection efficiency and record length. Here we report on the efficient generation of three-partite cluster states made of one semiconductor spin and two indistinguishable photons. We harness a semiconductor quantum dot inserted in an optical cavity for efficient photon collection and electrically controlled for high indistinguishability. We demonstrate two- and three-particle entanglement with fidelities of 80 ± 4% and 63 ± 5%, respectively, with photon indistinguishability of 88 ± 0.5%. Owing to the high operation rate allowed by the quantum-dot platform, the spin–photon and spin–photon–photon entanglement rates exceed, by three and two orders of magnitude, respectively, those of the previous state of the art. Our system and experimental scheme, a monolithic solid-state device controlled with a resource-efficient simple experimental configuration, are very promising for future scalable applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A monolithic solid-state spin–photon interface.
Fig. 2: Experimental scheme and spin–photon entanglement.
Fig. 3: Process fidelity measurement.
Fig. 4: Photon indistinguishability.

Similar content being viewed by others

Data availability

All data acquired and used in this work are available upon reasonable request to P.S. (pascale.senellart-mardon@c2n.upsaclay.fr) or N.C. (nathan.coste@c2n.upsaclay.fr).

References

  1. Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    Article  ADS  Google Scholar 

  2. Azuma, K., Tamaki, K. & Lo, H.-K. All-photonic quantum repeaters. Nat. Commun. 6, 6787 (2015).

    Article  ADS  Google Scholar 

  3. Greenberger, D. M, Horne, M. A & Zeilinger, A. Going Beyond Bell’s Theorem (Springer, 1989).

  4. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001).

    Article  ADS  Google Scholar 

  5. Raussendorf, R., Bravyi, S. & Harrington, J. Long-range quantum entanglement in noisy cluster states. Phys. Rev. A 71, 062313 (2005).

    Article  ADS  Google Scholar 

  6. Raussendorf, R., Harrington, J. & Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  7. Newman, M., de Castro, L. A. & Brown, K. R. Generating fault-tolerant cluster states from crystal structures. Quantum 4, 295 (2020).

    Article  Google Scholar 

  8. Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photonics 2, 030901 (2017).

    Article  ADS  Google Scholar 

  9. Zhang, R. et al. Loss-tolerant all-photonic quantum repeater with generalized Shor code. Optica 9, 152–158 (2022).

    Article  ADS  Google Scholar 

  10. Zhong, H.-S. et al. 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett. 121, 250505 (2018).

    Article  ADS  Google Scholar 

  11. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    Article  ADS  Google Scholar 

  12. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  13. Knill, E. Quantum gates using linear optics and postselection. Phys. Rev. A 66, 052306 (2002).

    Article  ADS  Google Scholar 

  14. Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020).

    Article  ADS  Google Scholar 

  15. Schön, C., Solano, E., Verstraete, F., Cirac, J. I. & Wolf, M. M. Sequential generation of entangled multiqubit states. Phys. Rev. Lett. 95, 110503 (2005).

    Article  ADS  Google Scholar 

  16. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  ADS  Google Scholar 

  17. Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    Article  ADS  Google Scholar 

  18. Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012).

    Article  ADS  Google Scholar 

  19. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012).

    Article  ADS  Google Scholar 

  20. Schaibley, J. R. et al. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013).

    Article  ADS  Google Scholar 

  21. Appel, M. H. et al. Entangling a hole spin with a time-bin photon: a waveguide approach for quantum dot sources of multiphoton entanglement. Phys. Rev. Lett. 128, 233602 (2022).

    Article  ADS  Google Scholar 

  22. Schwartz, I. et al. Deterministic generation of a cluster state of entangled photons. Science 354, 434–437 (2016).

    Article  ADS  Google Scholar 

  23. Cogan, D., Su, ZE., Kenneth, O. et al. Deterministic generation of indistinguishable photons in a cluster state. Nat. Photon. https://doi.org/10.1038/s41566-022-01152-2 (2023).

  24. Yang, C.-W. et al. Sequential generation of multiphoton entanglement with a Rydberg superatom. Nat. Photon. 16, 658–661 (2022).

    Article  ADS  Google Scholar 

  25. Thomas, P., Ruscio, L., Morin, O. & Rempe, G. Efficient generation of entangled multiphoton graph states from a single atom. Nature 608, 677–681 (2022).

    Article  ADS  Google Scholar 

  26. Nowak, A. K. et al. Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014).

    Article  ADS  Google Scholar 

  27. Dousse, A. et al. Controlled light–matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett. 101, 267404 (2008).

    Article  ADS  Google Scholar 

  28. Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  29. Thomas, S. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

    Article  ADS  Google Scholar 

  30. Coste, N. et al. Probing the dynamics and coherence of a semiconductor hole spin via acoustic phonon-assisted excitation. Quantum Sci. Technol. 8, 025021 (2023).

  31. Blinov, B. B., Moehring, D. L., Duan, L. M. & Monroe, C. Observation of entanglement between a single trapped atom and a single photon. Nature 428, 153–157 (2004).

    Article  ADS  Google Scholar 

  32. Wang, B.-Y., Denning, E. V., Gür, U. M., Lu, C.-Y. & Gregersen, N. Micropillar single-photon source design for simultaneous near-unity efficiency and indistinguishability. Phys. Rev. B 102, 125301 (2020).

    Article  ADS  Google Scholar 

  33. Wein, S. C. et al. Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics. Phys. Rev. A 102, 033701 (2020).

    Article  ADS  Google Scholar 

  34. Ollivier, H. et al. Reproducibility of high-performance quantum dot single-photon sources. ACS Photonics 7, 1050–1059 (2020).

    Article  Google Scholar 

  35. Hilaire, P. et al. Deterministic assembly of a charged-quantum-dot-micropillar cavity device. Phys. Rev. B 102, 195402 (2020).

    Article  ADS  Google Scholar 

  36. Zaporski, L., Shofer, N., Bodey, J.H. et al. Ideal refocusing of an optically active spin qubit under strong hyperfine interactions. Nat. Nanotechnol. 18, 257–263 (2023).

Download references

Acknowledgements

This work was partially supported by the the IAD-ANR support ASTRID programme Projet ANR-18-ASTR-0024 LIGHT, the QuantERA ERA-NET Cofund in Quantum Technologies project HIPHOP, the European Union’s Horizon 2020 FET OPEN project QLUSTER (grant no. 862035), the European Union’s Horizon 2020 Research and Innovation Programme QUDOT-TECH under the Marie Skłodowska-Curie grant agreement no. 861097 and the French RENATECH network, a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ programme (Labex NanoSaclay, reference no. ANR-10-LABX-0035), the Plan France 2030 through the project ANR-22-PETQ-0006. N.C. acknowledges support from the Paris Ile-de-France Région in the framework of DIM SIRTEQ. S.C.W. acknowledges support from the Foundational Questions Institute Fund (grant no. FQXi-IAF19-01). S.E.E. acknowledges supported from the NSF (grant no. 1741656).

Author information

Authors and Affiliations

Authors

Contributions

N.C. and D.A.F. carried out experimental investigations, data analysis, methodology, visualization and writing. N.B. carried out data analysis, methodology, formal analysis, visualization, writing and supervision. S.C.W. and P.H. provided conceptualization, formal analysis and writing. R.F. provided conceptualization and formal analysis. M.G., B.G. and A.A. carried out formal analysis. N.S., I.S. and A.H. performed nano-processing. A.L. and M.M. carried out sample growth. S.E.E. contributed conceptualization and formal analysis. O.K. contributed to data analysis and methodology. L.L. carried out sample design, methodology, data analysis and formal analysis. P.S. performed nano-processing, data analysis, methodology, visualization, writing, supervision and funding acquisition.

Corresponding authors

Correspondence to N. Coste or P. Senellart.

Ethics declarations

Competing interests

N.S. is a co-founder and P.S. is a scientific advisor and co-founder of the company Quandela. The other authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Wolfgang Langbein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–3, model, derivation of fidelity lower bounds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coste, N., Fioretto, D.A., Belabas, N. et al. High-rate entanglement between a semiconductor spin and indistinguishable photons. Nat. Photon. 17, 582–587 (2023). https://doi.org/10.1038/s41566-023-01186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01186-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing