Abstract
Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration and magnetic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with backaction noise arising from interactions between the two, dictate the standard quantum limit. Advanced techniques based on non-classical probes, in situ ponderomotive squeezed light and backaction-evading measurements have been developed to overcome the standard quantum limit for individual optomechanical sensors. An alternative, conceptually simpler approach to enhance optomechanical sensing rests on joint measurements taken by multiple sensors. In this configuration, a pathway to overcome the fundamental limits in joint measurements has not been explored. Here we demonstrate that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity in the shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the sensitivity–bandwidth product and observe a 25% increase compared with that of classical probes. The demonstrated entanglement-enhanced optomechanical sensors would enable new capabilities for inertial navigation, acoustic imaging and searches for new physics.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Active-feedback quantum control of an integrated low-frequency mechanical resonator
Nature Communications Open Access 05 August 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.
Code availability
The code used for modelling the data is available from Y.X. upon reasonable request.
References
Li, B.-B., Ou, L., Lei, Y. & Liu, Y.-C. Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021).
Liu, X. et al. Progress of optomechanical micro/nano sensors: a review. Int. J. Optomechatronics 15, 120–159 (2021).
Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012).
Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).
Forstner, S. et al. Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).
Caves, C. M., Thorne, K. S., Drever, R. W., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341 (1980).
Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).
Teufel, J. D., Donner, T., Castellanos-Beltran, M., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).
Tse, M. E. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).
Acernese, F. et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 123, 231108 (2019).
Li, B.-B. et al. Quantum enhanced optomechanical magnetometry. Optica 5, 850–856 (2018).
Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).
Ockeloen-Korppi, C. et al. Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016).
Tsang, M. & Caves, C. M. Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012).
Mercier de Lépinay, L., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).
Møller, C. B. et al. Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547, 191–195 (2017).
Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).
Sudhir, V. et al. Quantum correlations of light from a room-temperature mechanical oscillator. Phys. Rev. X 7, 031055 (2017).
Purdy, T., Grutter, K., Srinivasan, K. & Taylor, J. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2017).
Kampel, N. et al. Improving broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).
D’Alessandro, A., Scudero, S. & Vitale, G. A review of the capacitive MEMS for seismology. Sensors 19, 3093 (2019).
Carney, D., Hook, A., Liu, Z., Taylor, J. M. & Zhao, Y. Ultralight dark matter detection with mechanical quantum sensors. New J. Phys. 23, 023041 (2021).
Brady, A. J. et al. Entangled sensor-networks for dark-matter searches. PRX Quantum 3, 030333 (2022).
Derevianko, A. Detecting dark-matter waves with a network of precision-measurement tools. Phys. Rev. A 97, 042506 (2018).
Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol. 6, 024002 (2021).
Carney, D., Ghosh, S., Krnjaic, G. & Taylor, J. M. Proposal for gravitational direct detection of dark matter. Phys. Rev. D 102, 072003 (2020).
Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).
Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, K. & Stickler, B. A. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).
Proctor, T. J., Knott, P. A. & Dunningham, J. A. Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett. 120, 080501 (2018).
Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Technol. 6, 043001 (2021).
Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97, 032329 (2018).
Ge, W., Jacobs, K., Eldredge, Z., Gorshkov, A. V. & Foss-Feig, M. Distributed quantum metrology with linear networks and separable inputs. Phys. Rev. Lett. 121, 043604 (2018).
Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).
Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137–142 (2021).
Hong, S. et al. Quantum enhanced multiple-phase estimation with multi-mode N00N states. Nat. Commun. 12, 5211 (2021).
Xia, Y. et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett. 124, 150502 (2020).
Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001).
Zhao, Y. et al. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys. Rev. Lett. 124, 171101 (2020).
Ghadimi, A. H. et al. Elastic strain engineering for ultralow mechanical dissipation. Science 360, 764–768 (2018).
Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).
MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).
Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).
Høj, D. et al. Ultra-coherent nanomechanical resonators based on inverse design. Nat. Commun. 12, 5766 (2021).
Malnou, M. et al. Squeezed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).
Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).
Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017).
Brady, A. J. et al. Entanglement-enhanced optomechanical sensor array for dark matter searches. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.07291 (2022).
Harris, G. I., McAuslan, D. L., Stace, T. M., Doherty, A. C. & Bowen, W. P. Minimum requirements for feedback enhanced force sensing. Phys. Rev. Lett. 111, 103603 (2013).
Chowdhury, M. D., Agrawal A. R. & Wilson D. J. Membrane-based optomechanical accelerometry. Phys. Rev. Applied 19, 024011 (2023).
Liu, S. et al. Room-temperature fiber tip nanoscale optomechanical bolometer. ACS Photonics 9, 1586–1593 (2022).
Jousset, P. et al. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun. 13, 1753 (2022).
Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10, 5777 (2019).
Walter, F. et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 11, 2436 (2020).
Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).
Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).
Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).
Hook, A. TASI lectures on the strong CP problem and axions. Preprint at arXiv https://doi.org/10.48550/arXiv.1812.02669 (2018).
Haghighi, I. M., Malossi, N., Natali, R., Di Giuseppe, G. & Vitali, D. Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer. Phys. Rev. Appl. 9, 034031 (2018).
Hines, A., Richardson, L., Wisniewski, H. & Guzman, F. Optomechanical inertial sensors. Appl. Opt. 59, G167–G174 (2020).
Westerveld, W. J. et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photon. 15, 341–345 (2021).
Acknowledgements
Z.Z. acknowledges the Office of Naval Research (grant no. N00014-19-1-2190) for their support. Y.X., A.R.A., C.M.P., D.J.W., Q.Z. and Z.Z. acknowledge the National Science Foundation Convergence Accelerator award nos. 2040575 and 2134830. Y.X., A.J.B., Z.L., Q.Z. and Z.Z. acknowledge support from US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS), under contract no. DE-AC02-07CH11359. Q.Z. acknowledges support from Defense Advanced Research Projects Agency (DARPA) under the Young Faculty Award (YFA) grant no. N660012014029 and NSF CAREER Award no. 2142882.
Author information
Authors and Affiliations
Contributions
Y.X., D.J.W. and Z.Z. conceived and designed the experiments. Y.X. performed the experiments. Y.X., D.J.W. and Z.Z. analysed the data. A.R.A., C.M.P. and D.J.W. designed and fabricated the silicon nitride membrane devices. A.J.B., Z.L. and Q.Z. contributed to the analysis tools. Z.Z. supervised the project. All the authors contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections I–III and Figs. 1–6.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xia, Y., Agrawal, A.R., Pluchar, C.M. et al. Entanglement-enhanced optomechanical sensing. Nat. Photon. 17, 470–477 (2023). https://doi.org/10.1038/s41566-023-01178-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-023-01178-0
This article is cited by
-
Entangled light enhances force sensing
Nature Photonics (2023)
-
Active-feedback quantum control of an integrated low-frequency mechanical resonator
Nature Communications (2023)