Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entanglement-enhanced optomechanical sensing

Abstract

Optomechanical systems have been exploited in ultrasensitive measurements of force, acceleration and magnetic fields. The fundamental limits for optomechanical sensing have been extensively studied and now well understood—the intrinsic uncertainties of the bosonic optical and mechanical modes, together with backaction noise arising from interactions between the two, dictate the standard quantum limit. Advanced techniques based on non-classical probes, in situ ponderomotive squeezed light and backaction-evading measurements have been developed to overcome the standard quantum limit for individual optomechanical sensors. An alternative, conceptually simpler approach to enhance optomechanical sensing rests on joint measurements taken by multiple sensors. In this configuration, a pathway to overcome the fundamental limits in joint measurements has not been explored. Here we demonstrate that joint force measurements taken with entangled probes on multiple optomechanical sensors can improve the bandwidth in the thermal-noise-dominant regime or the sensitivity in the shot-noise-dominant regime. Moreover, we quantify the overall performance of entangled probes with the sensitivity–bandwidth product and observe a 25% increase compared with that of classical probes. The demonstrated entanglement-enhanced optomechanical sensors would enable new capabilities for inertial navigation, acoustic imaging and searches for new physics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental scheme and measurement power spectra.
Fig. 2: Entanglement-enhanced versus classical optomechanical sensing.
Fig. 3: Sensitivity and bandwidth reconfigured by resonant frequency difference.
Fig. 4: Sensitivity-bandwidth product as a figure of merit for joint force measurements.
Fig. 5: Incoherent force sensing.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used for modelling the data is available from Y.X. upon reasonable request.

References

  1. Li, B.-B., Ou, L., Lei, Y. & Liu, Y.-C. Cavity optomechanical sensing. Nanophotonics 10, 2799–2832 (2021).

    Article  Google Scholar 

  2. Liu, X. et al. Progress of optomechanical micro/nano sensors: a review. Int. J. Optomechatronics 15, 120–159 (2021).

    Article  ADS  Google Scholar 

  3. Gavartin, E., Verlot, P. & Kippenberg, T. J. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012).

    Article  ADS  Google Scholar 

  4. Krause, A. G., Winger, M., Blasius, T. D., Lin, Q. & Painter, O. A high-resolution microchip optomechanical accelerometer. Nat. Photon. 6, 768–772 (2012).

    Article  ADS  Google Scholar 

  5. Forstner, S. et al. Cavity optomechanical magnetometer. Phys. Rev. Lett. 108, 120801 (2012).

    Article  ADS  Google Scholar 

  6. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  7. Caves, C. M., Thorne, K. S., Drever, R. W., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341 (1980).

    Article  ADS  Google Scholar 

  8. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Teufel, J. D., Donner, T., Castellanos-Beltran, M., Harlow, J. W. & Lehnert, K. W. Nanomechanical motion measured with an imprecision below that at the standard quantum limit. Nat. Nanotechnol. 4, 820–823 (2009).

    Article  ADS  Google Scholar 

  10. Tse, M. E. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    Article  ADS  Google Scholar 

  11. Acernese, F. et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett. 123, 231108 (2019).

    Article  ADS  Google Scholar 

  12. Li, B.-B. et al. Quantum enhanced optomechanical magnetometry. Optica 5, 850–856 (2018).

    Article  ADS  Google Scholar 

  13. Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).

    Article  ADS  Google Scholar 

  14. Ockeloen-Korppi, C. et al. Quantum backaction evading measurement of collective mechanical modes. Phys. Rev. Lett. 117, 140401 (2016).

    Article  ADS  Google Scholar 

  15. Tsang, M. & Caves, C. M. Evading quantum mechanics: engineering a classical subsystem within a quantum environment. Phys. Rev. X 2, 031016 (2012).

    Google Scholar 

  16. Mercier de Lépinay, L., Ockeloen-Korppi, C. F., Woolley, M. J. & Sillanpää, M. A. Quantum mechanics–free subsystem with mechanical oscillators. Science 372, 625–629 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Møller, C. B. et al. Quantum back-action-evading measurement of motion in a negative mass reference frame. Nature 547, 191–195 (2017).

    Article  ADS  Google Scholar 

  18. Mason, D., Chen, J., Rossi, M., Tsaturyan, Y. & Schliesser, A. Continuous force and displacement measurement below the standard quantum limit. Nat. Phys. 15, 745–749 (2019).

    Article  Google Scholar 

  19. Sudhir, V. et al. Quantum correlations of light from a room-temperature mechanical oscillator. Phys. Rev. X 7, 031055 (2017).

    Google Scholar 

  20. Purdy, T., Grutter, K., Srinivasan, K. & Taylor, J. Quantum correlations from a room-temperature optomechanical cavity. Science 356, 1265–1268 (2017).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kampel, N. et al. Improving broadband displacement detection with quantum correlations. Phys. Rev. X 7, 021008 (2017).

    Google Scholar 

  22. D’Alessandro, A., Scudero, S. & Vitale, G. A review of the capacitive MEMS for seismology. Sensors 19, 3093 (2019).

    Article  ADS  Google Scholar 

  23. Carney, D., Hook, A., Liu, Z., Taylor, J. M. & Zhao, Y. Ultralight dark matter detection with mechanical quantum sensors. New J. Phys. 23, 023041 (2021).

    Article  ADS  Google Scholar 

  24. Brady, A. J. et al. Entangled sensor-networks for dark-matter searches. PRX Quantum 3, 030333 (2022).

    Article  ADS  Google Scholar 

  25. Derevianko, A. Detecting dark-matter waves with a network of precision-measurement tools. Phys. Rev. A 97, 042506 (2018).

    Article  ADS  Google Scholar 

  26. Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol. 6, 024002 (2021).

    Article  ADS  Google Scholar 

  27. Carney, D., Ghosh, S., Krnjaic, G. & Taylor, J. M. Proposal for gravitational direct detection of dark matter. Phys. Rev. D 102, 072003 (2020).

    Article  ADS  Google Scholar 

  28. Gessner, M., Pezzè, L. & Smerzi, A. Sensitivity bounds for multiparameter quantum metrology. Phys. Rev. Lett. 121, 130503 (2018).

    Article  ADS  Google Scholar 

  29. Rudolph, H., Delić, U., Aspelmeyer, M., Hornberger, K. & Stickler, B. A. Force-gradient sensing and entanglement via feedback cooling of interacting nanoparticles. Phys. Rev. Lett. 129, 193602 (2022).

    Article  ADS  Google Scholar 

  30. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  31. Proctor, T. J., Knott, P. A. & Dunningham, J. A. Multiparameter estimation in networked quantum sensors. Phys. Rev. Lett. 120, 080501 (2018).

    Article  ADS  Google Scholar 

  32. Zhang, Z. & Zhuang, Q. Distributed quantum sensing. Quantum Sci. Technol. 6, 043001 (2021).

    Article  ADS  Google Scholar 

  33. Zhuang, Q., Zhang, Z. & Shapiro, J. H. Distributed quantum sensing using continuous-variable multipartite entanglement. Phys. Rev. A 97, 032329 (2018).

    Article  ADS  Google Scholar 

  34. Ge, W., Jacobs, K., Eldredge, Z., Gorshkov, A. V. & Foss-Feig, M. Distributed quantum metrology with linear networks and separable inputs. Phys. Rev. Lett. 121, 043604 (2018).

    Article  ADS  Google Scholar 

  35. Guo, X. et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys. 16, 281–284 (2020).

    Article  Google Scholar 

  36. Liu, L.-Z. et al. Distributed quantum phase estimation with entangled photons. Nat. Photon. 15, 137–142 (2021).

    Article  ADS  Google Scholar 

  37. Hong, S. et al. Quantum enhanced multiple-phase estimation with multi-mode N00N states. Nat. Commun. 12, 5211 (2021).

    Article  ADS  Google Scholar 

  38. Xia, Y. et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett. 124, 150502 (2020).

    Article  ADS  Google Scholar 

  39. Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanin, S. P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2001).

    Article  ADS  Google Scholar 

  40. Zhao, Y. et al. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors. Phys. Rev. Lett. 124, 171101 (2020).

    Article  ADS  Google Scholar 

  41. Ghadimi, A. H. et al. Elastic strain engineering for ultralow mechanical dissipation. Science 360, 764–768 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  42. Beccari, A. et al. Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022).

  43. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  ADS  Google Scholar 

  44. Tsaturyan, Y., Barg, A., Polzik, E. S. & Schliesser, A. Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution. Nat. Nanotechnol. 12, 776–783 (2017).

    Article  Google Scholar 

  45. Høj, D. et al. Ultra-coherent nanomechanical resonators based on inverse design. Nat. Commun. 12, 5766 (2021).

    Article  ADS  Google Scholar 

  46. Malnou, M. et al. Squeezed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).

    Google Scholar 

  47. Backes, K. M. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

    Article  ADS  Google Scholar 

  48. Korobko, M. et al. Beating the standard sensitivity-bandwidth limit of cavity-enhanced interferometers with internal squeezed-light generation. Phys. Rev. Lett. 118, 143601 (2017).

    Article  ADS  Google Scholar 

  49. Brady, A. J. et al. Entanglement-enhanced optomechanical sensor array for dark matter searches. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.07291 (2022).

  50. Harris, G. I., McAuslan, D. L., Stace, T. M., Doherty, A. C. & Bowen, W. P. Minimum requirements for feedback enhanced force sensing. Phys. Rev. Lett. 111, 103603 (2013).

    Article  ADS  Google Scholar 

  51. Chowdhury, M. D., Agrawal A. R. & Wilson D. J. Membrane-based optomechanical accelerometry. Phys. Rev. Applied 19, 024011 (2023).

  52. Liu, S. et al. Room-temperature fiber tip nanoscale optomechanical bolometer. ACS Photonics 9, 1586–1593 (2022).

    Article  MathSciNet  Google Scholar 

  53. Jousset, P. et al. Fibre optic distributed acoustic sensing of volcanic events. Nat. Commun. 13, 1753 (2022).

    Article  ADS  Google Scholar 

  54. Sladen, A. et al. Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables. Nat. Commun. 10, 5777 (2019).

    Article  ADS  Google Scholar 

  55. Walter, F. et al. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 11, 2436 (2020).

    Article  ADS  Google Scholar 

  56. Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. Nature 594, 201–206 (2021).

    Article  ADS  Google Scholar 

  57. Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

    Article  ADS  Google Scholar 

  58. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

    Article  ADS  Google Scholar 

  59. Hook, A. TASI lectures on the strong CP problem and axions. Preprint at arXiv https://doi.org/10.48550/arXiv.1812.02669 (2018).

  60. Haghighi, I. M., Malossi, N., Natali, R., Di Giuseppe, G. & Vitali, D. Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer. Phys. Rev. Appl. 9, 034031 (2018).

    Article  ADS  Google Scholar 

  61. Hines, A., Richardson, L., Wisniewski, H. & Guzman, F. Optomechanical inertial sensors. Appl. Opt. 59, G167–G174 (2020).

    Article  Google Scholar 

  62. Westerveld, W. J. et al. Sensitive, small, broadband and scalable optomechanical ultrasound sensor in silicon photonics. Nat. Photon. 15, 341–345 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.Z. acknowledges the Office of Naval Research (grant no. N00014-19-1-2190) for their support. Y.X., A.R.A., C.M.P., D.J.W., Q.Z. and Z.Z. acknowledge the National Science Foundation Convergence Accelerator award nos. 2040575 and 2134830. Y.X., A.J.B., Z.L., Q.Z. and Z.Z. acknowledge support from US Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS), under contract no. DE-AC02-07CH11359. Q.Z. acknowledges support from Defense Advanced Research Projects Agency (DARPA) under the Young Faculty Award (YFA) grant no. N660012014029 and NSF CAREER Award no. 2142882.

Author information

Authors and Affiliations

Authors

Contributions

Y.X., D.J.W. and Z.Z. conceived and designed the experiments. Y.X. performed the experiments. Y.X., D.J.W. and Z.Z. analysed the data. A.R.A., C.M.P. and D.J.W. designed and fabricated the silicon nitride membrane devices. A.J.B., Z.L. and Q.Z. contributed to the analysis tools. Z.Z. supervised the project. All the authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Yi Xia or Zheshen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–III and Figs. 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Agrawal, A.R., Pluchar, C.M. et al. Entanglement-enhanced optomechanical sensing. Nat. Photon. 17, 470–477 (2023). https://doi.org/10.1038/s41566-023-01178-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01178-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing